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Introduction

» Severe thunderstorms hit Manitoba, Canada on September 5,
1996:

P brought down electricity transmission line towers

» wind and tension from failed towers caused cascading tower
failure

> electricity supply to networks in North Dakota was interrupted
for the two weeks following

» Manitoba Hydro subsequently funded a project for the
modelling and prediction of the failure of transmission lines
caused by high-intensity winds

» Objective: Model storm cells and characterize storms and
storm systems



Storm Cells

» Storm cell: smallest unit of a storm producing system

Storm 1 Storm 2 Storm N

storm

storm
cell

cell "
cell cel =
derm te cell storm storm

czll ston. cell cell storm o,

cell cell

stor i omm orm

(Mohee & Miller, 2010)



Storm Cell Data (Bismarck, North Dakota)

Manitoba

R R R Ontario

Figure: May 2003 storm cells.
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1. Log-Gaussian Cox Process (LGCP)

Unobserved Gaussian Process:
> Z = {Z(u) Tue ]Rd} is a Gaussian process with:
EZ(u)] = n
Cov[Z(w), Z(w2)] = o°p(uz — u1; )
{Observed Events:}

> X ={X;,i=1,2,...,N} observations in A C R are
conditionally an inhomogeneous Poisson process (IPP) with:

{Xi,i=1,2,...,N} | Z(u) ~ IPP[A(u)]
where:
A(u) = exp {Z(u)}

(Mgller et al., 1998)



1. Log-Gaussian Cox Process (LGCP)

y—coordinate

x—coordinate



1. Log-Gaussian Cox Process (LGCP)

y—coordinate

x—coordinate



1. Log-Gaussian Cox Process (LGCP)

y—coordinate

x—coordinate



2. Neyman-Scott Process
Unobserved Parent Process:

> P={P;, j=1,2,...} € R is the parent process

{P;, j=1,2,...} ~HPP(}p)

{Observed Offspring Process:}
> X ={Xj, i=1,2,...,N;} C Ais the offspring process

Xy, i=1,.. N} [ {P}, j=1,2,...} ~ [IPP[Axp(x)]
where:
Axp(x) = Y afix—P;) and
J
» « is the average number of offspring per parent
» f(-) is distribution of the displacement from offspring to the

parent
(Mgller, 2003)



2. Neyman-Scott Process
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2. Neyman-Scott Process




Conceptual Model lllustration
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Conceptual Model lllustration
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Conceptual Model lllustration




Hierarchical Cluster Process: Parent Process
For the jth storm with centre at (u, v) € R? x R:

{P,j=1,...} | Z(u,v) ~ [IPP[Ap(u,v)]

where:
Ap(u,v) = exp{B+ Z(u,v)}
E[Z(u,v)] = —05(c2+07)
COV[Z(Ul, Vl), Z(U2’ \/2)] = 0—26_(”“2_“1”/955) + O—%e—(‘VZ_Vﬂ/(ﬁt)
and:

> [ is an intercept parameter
> ag and af are spatial and temporal variance parameters

> ¢ and ¢; are spatial and temporal scale parameters



Hierarchical Cluster Process: Parent Process

AP(Uu V) = exp{/B + Z(U, V)}
(:c)v[Z(ul7 V1)7 Z(1_127 V2)] = O—Eef(H“Q*”lH/(ﬁs) + O—fe*(‘v2fvl|/¢t)
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Hierarchical Cluster Process: Offspring Process
For the ith storm cell from the jth storm at x= (s,t) € Sx T:

{X;j,i: ]., ey Nj} | {Pj,j: ].7 .. } ~ |PP[/\X‘p(X)]

where

Axip(x) Z@f ( 3) fi <t— vji W?)

and:

» « is the average number of storm cells per storm

» f,(-) is the spatial displacement between the storm cell and
the storm centre, Np(0,w?h)

» f(-) is the temporal displacement between the storm cell and
the storm centre, N(0,w?)



Hierarchical Cluster Process: Offspring Process
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Intensities for Hierarchical Cluster Process
First-Order Intensity:
Ax) = E[Axp(x)]
= aexp(f)
= A

Pair Correlation Function (PCF):

» Probability of observing a pair of points separated by a

distance of x, — x1 relative to what you would expect from a
Poisson process

)\(2) (Xl, X2)

A(x1)A\(x2)

f* f(X2 — Xl)
op(B)

/R3 /11@3 exp {g2p(u2 - u1)} fx1 — u1)f(xo — up)duydus

glxe—x1) =



PCF in Hierarchical Cluster Processes

Empirical Temporal PCF
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Parameter Estimation via Minimum Contrast

First-Order Intensity:

>
Il

Sx T
Clustering Parameters:
R r 2
0 = arg mine/ (g(u)l/4 — g(u)1/4) du
0

where:

» O represents the clustering parameters
» g(u) is an empirical estimate of the PCF



Projection Processes (Prokesova and Dvorak, 2014):

> Xs={s:(s;t)e XN(Sx T)}
> Xe={t:(s,t) e XN (Sx T)}



Results: Temporal Projection Process

UTM X (x 10%)

Right figure: Empirical temporal PCF (points) and fitted PCFs
for the hierarchical cluster process (lines), the Neyman-Scott
cluster process (dashed lines) and the LGCP (



Results: Spatial Projection Process

UTM X (x 109) r (km)

Right figure: Empirical spatial PCF (points) and fitted PCFs for
the hierarchical cluster process (lines), the Neyman-Scott cluster
process (dashed lines) and the LGCP ( ).



Marked Point Processes

» Mark: random variable associated with a point process event
(e.g. magnitude in earthquake models)

» Model joint distribution of X’ (point process) and M (mark
process):

[, M]

» Modelling Framework: [X, M] = [X][M | X]



Mark Process for Storm Cell Trajectories
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Results: Mark Process for Storm
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Ad Hoc SemiParametric Procedure

Projection/Minimum Contrast Method Fitting Procedure is
Limited:

> Very slow

P> Uses too much memory

» Identifiability of parameter estimates is compromised by
projection

Simple and Quick Alternative:

» Apply mean-shift clustering algorithm (Fukinaga and
Hostetler, 1975) to find storm centers
» Apply LGCP directly to storm centers

In order for this to work, we need to ensure that the mean-shift
algorithm can accurately find the cluster centers.



Data Sharpening (Choi and Hall, 1999)

» Introduced as a method to reduce bias in density estimation.

» Given raw data x1, X, ...,X, in R with unknown density f(x)
one can use a symmetric pdf as a kernel with scale parameter
h (the bandwidth). to estimate f{x).

» By performing local constant regression of x on x, one obtains
sharpened data, on which the kernel density estimate will have
reduced bias.

» This method can be iterated.



Data Sharpening

» Choi and Hall (1999) advocated a few iterations of their
algorithm in order to attain a sizeable bias reduction. At each
iteration, the sharpened data move closer to local modes.

» The iteration converges (Braun and Woolford, 2007):

Theorem 1: For fixed h and for any initial vector of observations
Xg, the data sharpening algorithm of Choi and Hall (1999)
converges to a unique vector x*.

» And this is equivalent to mean-shift clustering.



A Simulated Data Set

#it
##
#Hit
##
##
##
##

Min.

1st Qu.:
Median :

Mean

3rd Qu.

Max.

JULIAN

: 4.
10.
87.
1 73.
:135.
:154.

991
488
893
150
279
922

UTM.X
Min. -
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

387.
84.
251.
. 256.
432,
: 936.

75
64
46
71
56
04

UTM.Y
Min. -
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

330.
190.
317.
: 308.
432.
: 930.

0 N 00 00 o1 N

This is somewhat like the 2003 storm cell data set. The true values

of w are 60, 60 and 0.05. We expect 120 storms.



Estimated Cluster Centers

Clustered Storm Cells -- Simulated Data

Date

Figure 1: Black: simulated storm cells; Red: estimated cluster centers.



Comparison of Estimated Cluster Centers with Truth
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## [1] "Estimated No. of Clusters: 107"
## [1] "Actual No. of Clusters: 110"

## [1] "Number of Storm Cells: 22091"



Cluster Parameter Estimates
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Figure 2: Estimates of cluster scale parameters.



Estimated Cluster Sizes
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Figure 3: Estimated cluster sizes are almsot, but not always, accurate.



What about the 2003 North Dakota data?

Clustered Storm Cells -- A Subset of 2003

Date
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Figure 4: Black: storm cells; Red: estimated cluster centers.



Chararacteristics of Estimated Clusters

## [1] "Estimated Number of Clusters: 114"

## [1] "Number of Storm Cells: 29583"



Cluster Parameter Estimates - 2003
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Figure 5: Cluster scale parameter estimates.




Estimated Cluster Sizes - 2003
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Figure 6: Cluster size etimates.




Discussion

» Ad hoc procedure looks promising, but not perfect, since the
cluster centers are reasonably well predicted

» Clustering method is quick and simple

» When employing LGCP, measurement error should be
incorporated

» Clustering method can also be used as a diagnostic check on
the other method; e.g. it has provided evidence that observed
differences in the clustering mechanism over the season are
real.

» Clustering method indicates that parameter identifiability
issue for other method might be induced by use of projection.

» Clustering method could be used to provide good starting
guesses for the other method.



Future Work
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1. Composite likelihood approach to parameter estimation of a
spatio-temporal point process (Guan, 2006)

2. Joint estimation for spatio-temporal point processes with
evolving marks (Renshaw & Sarkka, 2001 and Sarkka &
Renshaw, 2006)
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