A Hierarchical Point Process Model for Storm Cells

W. John Braun (with Alisha Albert-Green and Charmaine Dean)

September 29, 2018

Introduction

- Severe thunderstorms hit Manitoba, Canada on September 5, 1996:
- brought down electricity transmission line towers
- wind and tension from failed towers caused cascading tower failure
- electricity supply to networks in North Dakota was interrupted for the two weeks following
- Manitoba Hydro subsequently funded a project for the modelling and prediction of the failure of transmission lines caused by high-intensity winds
- Objective: Model storm cells and characterize storms and storm systems

Storm Cells

- Storm cell: smallest unit of a storm producing system

(Mohee \& Miller, 2010)

Storm Cell Data (Bismarck, North Dakota)

Figure: May 2003 storm cells.
(ernest borgnine was here)

Storm Cells

1. Log-Gaussian Cox Process (LGCP)

Unobserved Gaussian Process:

- $\mathcal{Z}=\left\{Z(u): u \in \mathbb{R}^{d}\right\}$ is a Gaussian process with:

$$
\begin{aligned}
E[Z(u)] & =\mu \\
\operatorname{Cov}\left[Z\left(u_{1}\right), Z\left(u_{2}\right)\right] & =\sigma^{2} \rho\left(u_{2}-u_{1} ; \phi\right)
\end{aligned}
$$

\{Observed Events:\}

- $\mathcal{X}=\left\{X_{i}, i=1,2, \ldots, N\right\}$ observations in $A \subset \mathbb{R}^{d}$ are conditionally an inhomogeneous Poisson process (IPP) with:

$$
\left\{X_{i}, i=1,2, \ldots, N\right\} \mid Z(u) \sim \operatorname{IPP}[\Lambda(u)]
$$

where:

$$
\Lambda(u)=\exp \{Z(u)\}
$$

(Møller et al., 1998)

1. Log-Gaussian Cox Process (LGCP)

1. Log-Gaussian Cox Process (LGCP)

1. Log-Gaussian Cox Process (LGCP)

2. Neyman-Scott Process

Unobserved Parent Process:

- $\mathcal{P}=\left\{P_{j}, j=1,2, \ldots\right\} \in \mathbb{R}^{d}$ is the parent process

$$
\left\{P_{j}, j=1,2, \ldots\right\} \sim \operatorname{HPP}\left(\lambda_{p}\right)
$$

\{Observed Offspring Process: $\}$

- $\mathcal{X}=\left\{X_{i j}, i=1,2, \ldots, N_{j}\right\} \subset A$ is the offspring process

$$
\left\{X_{i j}, i=1, \ldots, N_{j}\right\} \mid\left\{P_{j}, j=1,2, \ldots\right\} \sim \operatorname{IPP}\left[\Lambda_{X \mid P}(x)\right]
$$

where:

$$
\Lambda_{X \mid P}(x)=\sum_{j} \alpha f\left(x-P_{j}\right) \text { and }
$$

- α is the average number of offspring per parent
- $f(\cdot)$ is distribution of the displacement from offspring to the parent
(Møller, 2003)

2. Neyman-Scott Process

2. Neyman-Scott Process

2. Neyman-Scott Process

2. Neyman-Scott Process

Generalize Neyman-Scott process by allowing the parent process to follow an LGCP

x-coordinate

Conceptual Model Illustration

Conceptual Model Illustration

Conceptual Model Illustration

Conceptual Model Illustration

Hierarchical Cluster Process: Parent Process

For the j th storm with centre at $(u, v) \in \mathbb{R}^{2} \times \mathbb{R}$:

$$
\left\{P_{j}, j=1, \ldots\right\} \mid Z(u, v) \sim \operatorname{IPP}\left[\Lambda_{P}(u, v)\right]
$$

where:

$$
\begin{aligned}
\Lambda_{P}(u, v) & =\exp \{\beta+Z(u, v)\} \\
E[Z(u, v)] & =-0.5\left(\sigma_{s}^{2}+\sigma_{t}^{2}\right) \\
\operatorname{Cov}\left[Z\left(u_{1}, v_{1}\right), Z\left(u_{2}, v_{2}\right)\right] & =\sigma_{s}^{2} e^{-\left(\left\|u_{2}-u_{1}\right\| / \phi_{s}\right)}+\sigma_{t}^{2} e^{-\left(\left|v_{2}-v_{1}\right| / \phi_{t}\right)}
\end{aligned}
$$

and:

- β is an intercept parameter
- σ_{s}^{2} and σ_{t}^{2} are spatial and temporal variance parameters
- ϕ_{s} and ϕ_{t} are spatial and temporal scale parameters

Hierarchical Cluster Process: Parent Process

$$
\begin{aligned}
\Lambda_{P}(u, v) & =\exp \{\beta+Z(u, v)\} \\
\operatorname{Cov}\left[Z\left(u_{1}, v_{1}\right), Z\left(u_{2}, v_{2}\right)\right] & =\sigma_{s}^{2} e^{-\left(\| u_{2}-u_{1}| | / \phi_{s}\right)}+\sigma_{t}^{2} e^{-\left(\left|v_{2}-v_{1}\right| / \phi_{t}\right)}
\end{aligned}
$$

x-coordinate
Small Variance

Small Scale

Hierarchical Cluster Process: Offspring Process

For the i th storm cell from the j th storm at $x=(s, t) \in S \times T$:

$$
\left\{X_{i j}, i=1, \ldots, N_{j}\right\} \mid\left\{P_{j}, j=1, \ldots\right\} \sim \operatorname{IPP}\left[\Lambda_{X \mid P}(x)\right]
$$

where

$$
\Lambda_{X \mid P}(x)=\sum_{j} \alpha f_{s}\left(s-u_{j} ; \omega_{s}^{2}\right) f_{t}\left(t-v_{j} ; \omega_{t}^{2}\right)
$$

and:

- α is the average number of storm cells per storm
- $f_{s}(\cdot)$ is the spatial displacement between the storm cell and the storm centre, $N_{2}\left(0, \omega_{s}^{2} I_{2}\right)$
- $f_{t}(\cdot)$ is the temporal displacement between the storm cell and the storm centre, $N\left(0, \omega_{t}^{2}\right)$

Hierarchical Cluster Process: Offspring Process

$$
\Lambda_{x \mid P}(x)=\sum_{j} \alpha f_{s}\left(s-u_{j} ; \omega_{s}^{2}\right) f_{t}\left(t-v_{j} ; \omega_{t}^{2}\right)
$$

Intensities for Hierarchical Cluster Process

First-Order Intensity:

$$
\begin{aligned}
\lambda(x) & =E\left[\Lambda_{x \mid p}(x)\right] \\
& =\alpha \exp (\beta) \\
& =\lambda
\end{aligned}
$$

Pair Correlation Function (PCF):

- Probability of observing a pair of points separated by a distance of $x_{2}-x_{1}$ relative to what you would expect from a Poisson process

$$
\begin{aligned}
g\left(x_{2}-x_{1}\right)= & \frac{\lambda^{(2)}\left(x_{1}, x_{2}\right)}{\lambda\left(x_{1}\right) \lambda\left(x_{2}\right)} \\
= & \frac{f * f\left(x_{2}-x_{1}\right)}{\exp (\beta)}+ \\
& \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \exp \left\{\sigma^{2} \rho\left(u_{2}-u_{1}\right)\right\} f\left(x_{1}-u_{1}\right) f\left(x_{2}-u_{2}\right) \mathrm{d} u_{1} \mathrm{~d} u_{2}
\end{aligned}
$$

PCF in Hierarchical Cluster Processes

Empirical Temporal PCF

Parameter Estimation via Minimum Contrast

First-Order Intensity:

$$
\hat{\lambda}=\frac{N}{|S \times T|}
$$

Clustering Parameters:

$$
\hat{\boldsymbol{\theta}}=\arg \min _{\theta} \int_{0}^{r}\left(g(u)^{1 / 4}-\hat{g}(u)^{1 / 4}\right)^{2} \mathrm{~d} u
$$

where:

- $\boldsymbol{\theta}$ represents the clustering parameters
- $\hat{g}(u)$ is an empirical estimate of the PCF

Projection Processes (Prokešová and Dvořák, 2014):

- $\mathcal{X}_{s}=\{s:(s, t) \in \mathcal{X} \cap(S \times T)\}$
- $\mathcal{X}_{t}=\{t:(s, t) \in \mathcal{X} \cap(S \times T)\}$

Results: Temporal Projection Process

Right figure: Empirical temporal PCF (points) and fitted PCFs for the hierarchical cluster process (lines), the Neyman-Scott cluster process (dashed lines) and the LGCP (dotted-dashed lines).

Results: Spatial Projection Process

Right figure: Empirical spatial PCF (points) and fitted PCFs for the hierarchical cluster process (lines), the Neyman-Scott cluster process (dashed lines) and the LGCP (dotted-dashed lines).

Marked Point Processes

- Mark: random variable associated with a point process event (e.g. magnitude in earthquake models)
- Model joint distribution of \mathcal{X} (point process) and \mathcal{M} (mark process):

$$
[\mathcal{X}, \mathcal{M}]
$$

- Modelling Framework: $[\mathcal{X}, \mathcal{M}]=[\mathcal{X}][\mathcal{M} \mid \mathcal{X}]$

Mark Process for Storm Cell Trajectories

(a) Duration.

(b) Speed.

(c) Direction.

Results: Mark Process for Storm Cell Trajectories

(a) Duration.

(b) Speed.

(c) Direction.

Ad Hoc SemiParametric Procedure

Projection/Minimum Contrast Method Fitting Procedure is Limited:

- Very slow
- Uses too much memory
- Identifiability of parameter estimates is compromised by projection

Simple and Quick Alternative:

- Apply mean-shift clustering algorithm (Fukinaga and Hostetler, 1975) to find storm centers
- Apply LGCP directly to storm centers

In order for this to work, we need to ensure that the mean-shift algorithm can accurately find the cluster centers.

Data Sharpening (Choi and Hall, 1999)

- Introduced as a method to reduce bias in density estimation.
- Given raw data $x_{1}, x_{2}, \ldots, x_{n}$ in R^{d} with unknown density $f(x)$ one can use a symmetric pdf as a kernel with scale parameter h (the bandwidth). to estimate $f(x)$.
- By performing local constant regression of x on x, one obtains sharpened data, on which the kernel density estimate will have reduced bias.
- This method can be iterated.

Data Sharpening

- Choi and Hall (1999) advocated a few iterations of their algorithm in order to attain a sizeable bias reduction. At each iteration, the sharpened data move closer to local modes.
- The iteration converges (Braun and Woolford, 2007):

Theorem 1: For fixed h and for any initial vector of observations $\mathrm{x}_{\mathbf{0}}$, the data sharpening algorithm of Choi and Hall (1999) converges to a unique vector \mathbf{x}^{*}.

- And this is equivalent to mean-shift clustering.

A Simulated Data Set

\#\#	JULIAN	UTM. X	UTM. Y
\#\#	Min. : -4.991	Min. : -387.75	Min. : -330.7
\#\#	1st Qu.: 10.488	1st Qu.: 84.64	1st Qu.: 190.5
\#	Median : 87.893	Median : 251.46	Median : 317.8
\#	Mean : 73.150	Mean : 256.71	Mean : 308.8
\#\#	3rd Qu.:135.279	3rd Qu.: 432.56	3rd Qu.: 432.2
\#\#	Max. : 154.922	Max. : 936.04	Max. : 930.8

This is somewhat like the 2003 storm cell data set. The true values of ω are 60,60 and 0.05 . We expect 120 storms.

Estimated Cluster Centers

Clustered Storm Cells -- Simulated Data

Figure 1: Black: simulated storm cells; Red: estimated cluster centers.

Comparison of Estimated Cluster Centers with Truth

\#\# [1] "Estimated No. of Clusters: 107"
\#\# [1] "Actual No. of Clusters: 110"
\#\# [1] "Number of Storm Cells: 22091"

Cluster Parameter Estimates

Figure 2: Estimates of cluster scale parameters.

Estimated Cluster Sizes

Figure 3: Estimated cluster sizes are almsot, but not always, accurate.

What about the 2003 North Dakota data?

Clustered Storm Cells -- A Subset of 2003

Figure 4: Black: storm cells; Red: estimated cluster centers.

Chararacteristics of Estimated Clusters

\#\# [1] "Estimated Number of Clusters: 114"
\#\# [1] "Number of Storm Cells: 29583"

Cluster Parameter Estimates - 2003

Figure 5: Cluster scale parameter estimates.

Estimated Cluster Sizes - 2003

Estimated

Figure 6: Cluster size etimates.

Discussion

- Ad hoc procedure looks promising, but not perfect, since the cluster centers are reasonably well predicted
- Clustering method is quick and simple
- When employing LGCP, measurement error should be incorporated
- Clustering method can also be used as a diagnostic check on the other method; e.g. it has provided evidence that observed differences in the clustering mechanism over the season are real.
- Clustering method indicates that parameter identifiability issue for other method might be induced by use of projection.
- Clustering method could be used to provide good starting guesses for the other method.

Future Work

1. Composite likelihood approach to parameter estimation of a spatio-temporal point process (Guan, 2006)
2. Joint estimation for spatio-temporal point processes with evolving marks (Renshaw \& Sarkka, 2001 and Sarkka \& Renshaw, 2006)

Acknowledgements

- Patrick Brown (St. Michael's Hospital, University of Toronto)
- Valerie Isham (University College London)
- Reg Kulperger (University of Western Ontario)
- Financial support from CANSSI and NSERC is gratefully acknowledged:
john owes patrick a pint

Sponsors

