
R Simulations for Kids

W. John Braun∗

Department of Statistical and Actuarial Sciences
University of Western Ontario

June 30, 2011

Abstract

How does one introduce young students to ideas of randomness and uncertainty? Does the
statistical program R have a role to play in elementary schools? This paper describes the code
for an example used by the author in a session with approximately 20 fifth- and sixth-grade
students.

Key Words: random numbers, simulation, Markov chain, fire, Monopoly

1 Introduction

There has been limited attention to probability and statistics in the public schools at the ele-
mentary level. In Canada, elementary statistics and probability concepts are introduced as part
of the math curriculum. However, it is not clear that this material is engaging the students and
attracting them into further study of probability and statistics.

More attention has been paid to probability and statistics at the high school level. In
Ontario, for example, the course Mathematics of Data Management (Ontario Ministry of Edu-
cation, 2000) covers material which is often found in introductory statistics university courses
at a somewhat reduced difficulty level. However, the course is designed as a prerequisite for
social science and business students and is not explicitly directed towards math, science and
engineering students. Thus, there appears to be a discontinuity in probability and statistics in
the school system and at the university.

Is it possible to attract young students to the field of probability and statistics? Monte
Carlo simulation on the computer may be one way to approach this. The R program (R Core
Development Team, 2011) provides a relatively easy way to produce executable code for such
simulations. This short article provides an illustration.

2 Simulating a Popular Children’s Game

A relatively simple-to-program example which is particularly captivating for students of this
age involves the simulation of plays of a Monopoly game. Most children are familiar with the
game, and when the board is displayed, they recognize it immediately.

The code below assumes simplified rules for the Monopoly game; the effects of the cards
which sometimes give movement instructions are ignored. An ambitious coder would be able to
add this feature in fairly easily.

The graphics described here are easily rendered using functions from the grid package (e.g.
Murrell, 2005). A quick introduction to the kinds of functions needed to produce the figures
can be found in the paper by Zhou and Braun (2010).

We start by assigning the property colours to a character vector, in the order that the
properties are laid out on the board.

∗ c©2011

1

propertycolors <- c("grey", "purple", "grey", "purple", "grey",

"grey", "lightblue", "grey", "lightblue", "lightblue", "black", "magenta",

"grey", "magenta", "magenta", "grey", "orange", "grey", "orange",

"orange", "grey", "red", "grey", "red", "red", "grey", "yellow",

"yellow", "grey", "yellow", "black", "green", "green",

"grey", "green", "grey", "grey", "darkblue", "grey", "darkblue")

The board is constructed using the following MonopolyBoard() function, which makes re-
peated calls to the grid.rect() function in order to produce the rectangular property locations.
The ith location is filled with the ith colour from the above vector.

MonopolyBoard <- function() {
This function is used to create the image of the

Monopoly Board, identifying the color-coded property

locations.

require(grid)

heights <- widths <- c(1.5, rep(1,9), 1.5)/12

ycenter <- cumsum(c(1.5, rep(1,9), 1.5)/12)-widths/2

xcenter <- rep(.75/12, 11)

ypropcenter <- xpropcenter <- numeric(40)

The first 11 properties (From "GO" to "JAIL")

for (i in 1:11) {
xpropcenter[i] <- xcenter[i]

ypropcenter[i] <- ycenter[i]

vp <- viewport(x=xpropcenter[i], y=ypropcenter[i],

height=heights[i], width=1.5/12)

pushViewport(vp)

grid.rect(gp=gpar(fill=propertycolors[i]))

upViewport()

}

The next 9 properties

for (i in 2:10) {
xpropcenter[i+10] <- ycenter[i]

ypropcenter[i+10] <- 1-xcenter[i]

vp <- viewport(x=xpropcenter[i+10], y=ypropcenter[i+10],

height=1.5/12, width=widths[i])

pushViewport(vp)

grid.rect(gp=gpar(fill=propertycolors[10+i]))

upViewport()

}

(From Free Parking to "Go to Jail!")

for (i in 1:11) {
xpropcenter[i+20] <- 1-xcenter[i]

ypropcenter[i+20] <- rev(ycenter)[i]

vp <- viewport(x=xpropcenter[i+20], y=ypropcenter[i+20],

height=heights[i], width=1.5/12)

pushViewport(vp)

grid.rect(gp=gpar(fill=(propertycolors[20+i])))

upViewport()

}

The last 9 properties

for (i in 2:10) {
xpropcenter[i+30] <- rev(ycenter)[i]

ypropcenter[i+30] <- xcenter[i]

vp <- viewport(x=xpropcenter[i+30], y=ypropcenter[i+30],

2

height=1.5/12, width=widths[i])

pushViewport(vp)

grid.rect(gp=gpar(fill=propertycolors[i+30]))

upViewport()

}
list(xpropcenter, ypropcenter) # locations of the property centers

}

In order to simulate the play of the game, the function MonopolyPlays() is used.

MonopolyPlays <- function(Nplays = 0) {
BoardOutput <- MonopolyBoard() # Build the Board First

xpropcenter <- BoardOutput[[1]] # Locate the Property Centers

ypropcenter <- BoardOutput[[2]]

if (Nplays > 0) { # The following code governs moves of a single player.

player <- circleGrob(r=.025, gp=gpar(fill="white"), name="player")

playerland <- editGrob(player, vp=viewport(x=xpropcenter[1],

y=ypropcenter[1]), name="playerland") # The player starts at Go

dicevalue <- textGrob(x=.5, y=.5, "start", name="dicevalue")

grid.draw(playerland) # Draw the Player's First Position (at Go)

grid.draw(dicevalue) # Indicate that the game is at Start

currentthrow <- sample(1:6, size=2, replace=TRUE)

lands <- sum(currentthrow) + 1 # Position after First Roll of the Dice

grid.edit("dicevalue", label=sum(currentthrow)) # Change the Value of Dice

grid.edit("playerland", vp=viewport(x=xpropcenter[lands],

y=ypropcenter[lands])) # Move the Player to New Location

if (Nplays > 1) {
for (i in 2:Nplays){

currentthrow <- sample(1:6, size=2, replace=TRUE)

lands <- (lands + sum(currentthrow) - 1)%%40 + 1

Add the current dice roll to the current location on the board

if (lands == 31) lands <- 11 # Go to Jail!

grid.edit("dicevalue", label=sum(currentthrow))

Roll the Dice

grid.edit("playerland", vp=viewport(x=xpropcenter[lands],

y=ypropcenter[lands]))

Move the Player

}
}

}
}

The output from MonopolyBoard() is the coordinate locations of the property centers on the
square board (assumed to be a unit square). The horizontal coordinates are listed first, followed
by the corresponding vertical coordinates, as listed below. A side effect of the function is to
draw the board in colour. This can be seen in Figure 1.

MonopolyBoard()

Loading required package: grid

[[1]]

[1] 0.0625000 0.0625000 0.0625000 0.0625000 0.0625000 0.0625000 0.0625000

[8] 0.0625000 0.0625000 0.0625000 0.0625000 0.1666667 0.2500000 0.3333333

[15] 0.4166667 0.5000000 0.5833333 0.6666667 0.7500000 0.8333333 0.9375000

[22] 0.9375000 0.9375000 0.9375000 0.9375000 0.9375000 0.9375000 0.9375000

[29] 0.9375000 0.9375000 0.9375000 0.8333333 0.7500000 0.6666667 0.5833333

[36] 0.5000000 0.4166667 0.3333333 0.2500000 0.1666667

##

3

Figure 1: The graph above shows the various color-coded properties of the Monopoly board. The
color coding has been chosen to match the colored properties used in the actual game. The grey
bars represent non-colored areas of the board such as railroad, utilities, and so on. The black bar
represents Jail.

4

[[2]]

[1] 0.0625000 0.1666667 0.2500000 0.3333333 0.4166667 0.5000000 0.5833333

[8] 0.6666667 0.7500000 0.8333333 0.9375000 0.9375000 0.9375000 0.9375000

[15] 0.9375000 0.9375000 0.9375000 0.9375000 0.9375000 0.9375000 0.9375000

[22] 0.8333333 0.7500000 0.6666667 0.5833333 0.5000000 0.4166667 0.3333333

[29] 0.2500000 0.1666667 0.0625000 0.0625000 0.0625000 0.0625000 0.0625000

[36] 0.0625000 0.0625000 0.0625000 0.0625000 0.0625000

The results of the first two dice throws are obtained through executing the following com-
mand. The sequence of moves is illustrated on the succeeding pages of this document.

MonopolyPlays(2)

start

5

9

6

9

7

3

8

3

The white circle represents the player’s current location on the board. The value at the
center represents the sum of the values on the dice.

Having demonstrated a few moves on the Monopoly board, we are now ready to conduct a
major simulation to determine which properties are most frequently landed on. The basic code
for the simulation is as follows:

Nplays <- 1000000

lands <- numeric(Nplays)

lands[1] <- 1 # The player starts at Go.

for (i in 2:Nplays){
currentthrow <- sample(1:6, size=2, replace=TRUE)

lands[i] <- (lands[i-1] + sum(currentthrow) - 1)%%40 + 1

if (lands[i]==31) lands[i] <- 11 # "Go To Jail" is in position 31

}
frequencies<- table(lands)

visitedproperties <- as.numeric(names(frequencies))

Of course, the output must be visualized in a reasonable way. The following code produces
a histogram whose bars are color-coded according to the property colors. The result is pictured
in Figure 2.

hist(lands, breaks=seq(.5, 40.5, 1), col=propertycolors,

xlab="Location", main="", ylab="Number of Visits", axes=FALSE)

box(); axis(2)

title("Which Property is Landed on Most Often?")

9

Location

N
um

be
r

of
 V

is
its

0
20

00
0

40
00

0

Which Property is Landed on Most Often?

Figure 2: Histogram showing frequency distribution of landings on the various properties.

On a 2 GHz laptop computer, this code takes less than 2 seconds to execute, resulting in the
sequence of properties landed on by a single individual in 1000000 moves. Ten- and eleven-year-
olds will not be interested in the code, but high school students should be able to understand
it. Furthermore, it is a simple 40-state Markov chain, so it is likely of interest even in certain
undergraduate probability and statistics courses.

At this point, the students will naturally want to discuss the results. Several questions can
be addressed. Is it surprising that the dark blue properties are not landed on as frequently as
the reds and oranges? Why is Jail so popular? Notice the increase in frequency as one proceeds
from Jail through the light purple properties towards the orange properties; how is this increase
related to the frequencies of the values of pairs of dice?

It is also interesting to consider the amount of money that could be spent at each of the
color-coded properties. Some code that could be used to estimate expected values of the amount
paid at each type of color-coded property is provided below. It is assumed that hotels are used
at each location.

locations <- c("Go", "purple1", "card", "purple2", "incometax",

"RR1", "blue1", "card", "blue2", "blue3", "jail", "pink1",

"util1", "pink2", "pink3", "RR2", "orange1", "card", "orange2",

"orange3", "FP", "red1", "card", "red2", "red3", "RR3", "yellow1",

"yellow2", "util2", "yellow3", "gotojail", "green1", "green2",

"card", "green3", "RR4", "card", "darkblue1", "luxurytax", "darkblue2")

hotelvalue <- c(0, 250, 0, 450, -200, 200, 550, 0, 550, 600, 0, 750, 0,

750, 900, 200, 950, 0, 950, 1000, 0, 1050, 0, 1050, 1100, 200, 1150,

1150, 0, 1200, 0, 1275, 1275, 0, 1400, 200, 0, 1500, -75, 2000)

payments <- hotelvalue[visitedproperties]*frequencies

names(payments) <- locations[visitedproperties]

payments

Go purple1 card purple2 incometax RR1 blue1

0 5782750 0 10621800 -4630200 4624600 12602700

card blue2 blue3 jail pink1 util1 pink2

0 12577950 13958400 0 17210250 0 18337500

10

pink3 RR2 orange1 card orange2 orange3 FP

22827600 5258400 25576850 0 26023350 27466000 0

red1 card red2 red3 RR3 yellow1 yellow2

28459200 0 27652800 29362300 5416000 31046550 31200650

util2 yellow3 green1 green2 card green3 RR4

0 32300400 34199325 32958750 0 34573000 4767200

card darkblue1 luxurytax darkblue2

0 33118500 -1674975 45454000

A better way to display this information is with a bar chart as shown in Figure 3. The code
is below.

barplot(payments, col=propertycolors[-31]) # Remove Go to Jail from the Colour List

This final plot seems to show that kids may understand this game better than adults. Board-
walk is best – provided you can put a hotel on it!

3 Concluding Remarks

The activity described in this paper was demonstrated in a short session with about 20 ten-
and eleven-year-old students. Throughout the session, the students appeared to be attentive,
and at numerous points, they posed good questions and were quick to respond when they were
asked questions.

The use of simulation to illustrate processes which are of immediate interest to the children
appears to be a good way of facilitating learning about ideas of randomness and uncertainty.

References

[1] Murrell, P. (2005) R Graphics. Chapman and Hall/CRC, Boca Raton, Florida.

[2] Ontario Ministry of Education (2000) The Ontario Curriculum Grades 11 and 12 48–54.
www.edu.gov.on.ca/eng/curriculum/secondary/math1112curr.pdf

[3] R Development Core Team (2011). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/

[4] Zhou, L. and Braun, W.J. (2010) Fun with the Grid Package, Journal of Statistics Education
18.

11

Go RR1 blue3 pink2 card FP red3 util2 card luxurytax

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07

Figure 3: Bar chart of payouts for various properties assuming hotels everywhere possible. Negative
values correspond to the Income Tax and Luxury Tax locations.

12

