R Trix for Kids? Presentation to TVSB Math Department Heads

13 November 2013

W. John Braun University of Western Ontario

Outline

Setting a Context: A Brief Pre-History of R Trix

A Sample of R

Why R?

The R Trix Site

Census at School

1970's: S

Goal: Statistical Methodological Research

Audience: Researchers at Bell Labs, and at other high level organizations

1980's: S-Plus

Goal: Scientific Research

Audience: Statistics Researchers, Faculty, Graduate Students

1990's: R

Goal: Methodological Research

Audience: Statistics Researchers, Faculty, Graduate Students

2000's: R

Goal: Scientific Research

Audience: Senior Undergraduate Statistics Students, Scientific Researchers, Major Corporations

2010's: R

Audience: Undergraduate students in many fields

Future: Secondary School students

→ R Trix: R Teaching Resources for Interactive eXploration of data and chance

R is a statistical program which is available online

Home (CRAN) is in Vienna, but there are now hundreds of mirror sites worldwide

Highest concentration of R activity in Canada is at the University of W?

Wrong, not Waterloo

Arithmetic:

> 23 + 49

[1] 72

> 359 - 198

[1] 161

- > 11111*11111
- [1] 123454321
- > 1234567654321/111111
- [1] 1111111

- > 1111^2
- [1] 1234321
- > sqrt(12345678987654321)
- [1] 11111111

Modular Arithmetic:

57 mod 13

> 578813

[1] 5

Absolute Value:

|-78|

> abs(-78)

[1] 78

Functions

polynomials, exp(), log()

sin(), cos(), tan(), sinh(), cosh(), ...

Derivatives

> D(expression(exp(x^3)), 'x')

 $exp(x^3) * (3 * x^2)$

Integrals

Find

$$\int_3^7 \sin(2/x) dx.$$

> integrate(function(x) sin(2/x), 3, 7)\$value

[1] 1.634917

Sequences and Series

> S <- seq(1, 100)

> **S**

11	10	9	8	7	6	5	4	3	2	1	[1]
29	28	27	26	25	24	23	22	21	20	19	[19]
47	46	45	44	4 3	4 2	41	40	39	38	37	[37]
65	64	<u>63</u>	<u>62</u>	61	60	5 <i>9</i>	<u>58</u>	57	<u>56</u>	55	[55]
83	<i>82</i>	81	80	7 <i>9</i>	7 <i>8</i>	77	7 <i>6</i>	75	74	7 <i>3</i>	[73]
	100	99	<u>98</u>	9 7	<u>96</u>	95	94	<u>93</u>	<i>92</i>	91	[91]

> sum(S) - (100) * (101)/2

[1] 0

> $sum(S^2) - (100) * (101) * (201)/6$

[1] 0

Linear Algebra

Vectors:

$$x = \begin{bmatrix} -3\\8\\6 \end{bmatrix}$$

> x < - c(-3, 8, 6)

$$z = \begin{bmatrix} 15\\13\\32 \end{bmatrix}$$

> z <- c(15, 13, 32)

x + z =

> x + z

[1] 12 21 38

Inner Products:

> x8*8z

[,1] [1,] 251

Matrices:

$$B = \begin{bmatrix} 2 & 4 & 3 \\ 2 & 1 & 10 \\ 1 & -2 & 1 \end{bmatrix}$$

- > B <- matrix(c(2, 2, 1, 4, 1, -2, 3, 10, 1), + nrow=3)
 > B
- $\begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} 2, 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

> B8*8z

[,1] [1,] 178 [2,] 363 [3,] 21

Solving Linear Systems:

$$By = z, y =$$

> y <- solve(B, z) > y

[1] 23.203390 -5.779661 -2.762712

> curve((x-5) * (x-3) * (2 * x - 7), from=2, to=6)

Graphics

- > curve ((x-5) * (x-3) * (2 * x 7), from=2, to=6)
- > abline(h=0)

Graphics

Statistics

- > weights <- c(35, 45, 44, 36, 38)</pre>
- > mean(weights)
- [1] 39.6
- > sd(weights)

[1] 4.615192

> median(weights)

[1] 38

> var(weights)

[1] 21.3

- > normalsample <- rnorm(150)</pre>
- > hist(normalsample)

Histogram of normalsample

normalsample

> pie(c("Conservative"=29, "Liberal"=37, + "NDP"=21, "Other"=13))

Open Source, so it is freely available

Powerful, using the best known statistical and numerical software, contributed to by 1000's of researchers worldwide

Flexible, but easy to learn*

Used by industry

*R syntax is trivial compared with Java and other programming languages typically taught in secondary school computing courses. Many R applications do not require any programming ability at all.

The R Trix Site

Under development by researchers at Western

A growing collection of resources and tools which can be used in introductory statistics classes

Introductory R materials

R Apps for math and statistics which do not require knowledge of R, accessible by many mobile devices

Materials can currently be accessed from www.stats.uwo.ca/faculty/braun

Census at School

Access to census-type data at local, national and international levels

Provides real data experience for students

Can be interfaced to R Trix

No longer supported by Statistics Canada, but adopted by the Statistical Society of Canada*

*Coordinator: Alison Gibbs, University of Toronto

R is a powerful tool which can be placed in the hands of secondary school students to aid in mathematics and statistics calculations and graphing

R Trix is under development to

- ease the transition to full-blown R
- provide students with online tools to possibly remove the need for special graphics calculators
- defer system administration issues related to site-wide installation of R