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Preamble: Identification of TH 103 threshold
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Preamble: Identification of TH 103 threshold
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Top panel: local constant regression (Nadaraya, 1964); bottom panel: data sharpened local constant
regression subject to a monotonicity constraint (Braun and Hall, 2001).
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Preamble: Identification of TH 103 threshold
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Top panel: quantile regression at the 99th percentile (Koenker, 2004, 2018); bottom panel: data
sharpened local constant regression subject to a monotonicity constraint plus robustly estimated 3σ
limits (Tatum, 1997) mitigating the effects of outliers.
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Need to Assess Estimation Uncertainty in...

local constant regression estimates

data sharpened monotonic regression estimates

quantile regression estimates

robustly estimated standard deviation (avoiding the effects

of outliers)

.... when the statistic is complicated, and it is difficult to derive standard errors and confidence
intervals, we often resort to the bootstrap; for some of the above statistics, the bootstrap will work
well but for some, it might fail... how can we tell beforehand?
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Introduction

The usual statistical problem:

Population

θ

Sample

θ̂

Estimate the population parameter θ using the sample

estimate θ̂.
7



Introduction

Fact: θ 6= θ̂

Question: How wrong is the estimate?

Statistical Answer: assess variability of θ̂

standard errors, confidence intervals, p-values for

hypothesis tests about θ

8



Introduction

In an ideal world:

Population
θ

Sample

θ̂

Sample

θ̂

Sample

θ̂

Sample

θ̂

Sample

θ̂

Sample

θ̂

Sample

θ̂

Assess variability of the sample estimate θ̂ by taking

additional samples, obtaining new estimates of θ each time.
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Introduction

Statistical theory, based on independence and normality

assumptions, for example, has allowed us to obtain

formulas for variances, standard errors, confidence intervals

and p-values for a large number of statistics.

e.g. recall: standard error of the sample mean, X̄: σ/
√
n

Problem! What if our assumptions are not quite right? Or,

what if we can’t obtain a useful formula?
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Introduction: Example

What is the standard error of the trimmed mean?

11



Introduction: Standard error of the trimmed mean

Consider the sample

78 86 92 81 3 89 94 88 79 85

The α trimmed mean is the average of the inner (1− 2α)

values in the sample.

For example, if α = .2, then the trimmed mean is the

average of the inner 60% of the observations.

12



Introduction: Standard error of the trimmed mean

We can compute the α = .2 trimmed mean in R for the

above sample with the following code:

x <- c(78, 86, 92, 81, 3, 89, 94, 88, 79, 85)

x.tmean <- mean(x, trim=.2)

x.tmean

## [1] 84.66667

This is the average of the 6 innermost observations, i.e.

excluding 3,78,92 and 94.

Note: untrimmed mean is 77.5, due to outlier.

13



Introduction: Standard error of the trimmed mean

It is always good practice to supply a standard error

estimate.

For the trimmed mean, this is not straightforward.

Recall that the standard error is the standard deviation of

the estimator based on the underlying distribution of the

data.
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Introduction: Parametric Bootstrap

For definiteness, let’s suppose that the data have really

come from a normal distribution. (The outlier is thus

assumed anomalous.)

Estimated mean: 84.7. (trimmed mean)

Estimated standard deviation: 6.86. (IQR/1.349)

i.e.

diff(quantile(x, c(.25, .75)))/1.349

## 75%

## 6.856931
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Introduction: Parametric bootstrap

We can simulate from this fitted distribution repeatedly,

computing the trimmed mean in each case.

The collection of trimmed means is then used to estimate

the standard deviation of the trimmed mean for such a

population.

This technique pre-dates the bootstrap: Monte Carlo

simulation with a new name.
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Introduction: Parametric bootstrap

One such simulated sample and estimate is obtained as

follows:

set.seed(1038087) # this allows you to obtain

# the same numerical values below.

x1 <- rnorm(10, mean=x.tmean, sd=6.86)

x1trim <- mean(x1, trim=.2)

x1trim

## [1] 82.46431
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Introduction: Parametric bootstrap

We generate 10000 samples and the respective trimmed

mean estimates. Then we calculate the standard deviation

of the whole collection as follows:

x10000 <- replicate(10000,

mean(rnorm(10, mean=x.tmean, sd=6.86), trim=.2))

sd(x10000)

## [1] 2.285725

Note: that the standard error of the ordinary sample mean

in this case is s/
√
n = 6.86/

√
10 = 2.17.
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Introduction: Standard error of the trimmed mean

We often do not know the true underlying distribution.

 We cannot simulate from a parametric distribution.

However, we can use the sample itself as an estimate of

the true underlying population.

In other words, by viewing the sample as a population, and

simulating from that, we can assess variability of an

estimate.
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Introduction: Subsampling

In the real world:

Sample

θ̂
Subsample

θ̂
^

Subsample

θ̂
^

Subsample

θ̂
^

Subsample

θ̂
^

Subsample

θ̂
^

Subsample

θ̂
^

Subsample

θ̂
^

Assess variability of θ̂ by estimating θ for each subsample

(where sample size is m < n).
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Introduction: Subsampling

Subsample from the original sample (using m = 5):

indices <- sample(1:10, size=5, replace=FALSE)

x.sub1 <- x[indices]

x.sub2 <- x[-indices]

x.sub1

## [1] 85 3 94 92 89

x.sub2

## [1] 78 86 81 88 79
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Introduction: Subsampling

Compute the trimmed mean for these subsamples:

mean(x.sub1, trim=.2)

## [1] 88.66667

mean(x.sub2, trim=.2)

## [1] 82

22



Introduction: Subsampling

Estimate the standard error by taking the standard

deviation of the sample means:

sd(c(mean(x.sub1), mean(x.sub2)))

## [1] 6.929646
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Introduction: Subsampling

... provides good assessments of variability in θ̂

... but assumes a sample size of m

Adjust if you can. E.g.,

sd(c(mean(x.sub1), mean(x.sub2)))*sqrt(5/10)

## [1] 4.9

Subsampling is often available as a reliable (if inefficient)

backup for the nonparametric bootstrap.

24



Introduction: Nonparametric bootstrap

In the bootstrap world:

Sample

θ̂
Re−sample

θ̂
^

Re−sample

θ̂
^

Re−sample

θ̂
^

Re−sample

θ̂
^

Re−sample

θ̂
^

Re−sample

θ̂
^

Re−sample

θ̂
^

Assess variability of the sample estimate θ̂ by taking

re-samples, obtaining new estimates of θ each time.
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Introduction: Nonparametric bootstrap

Re-sample from the original sample with replacement:

x.nonparbs1 <- sample(x, size=10, replace=TRUE)

x.nonparbs1

## [1] 79 94 89 85 79 86 89 86 92 94

Compute the trimmed mean for this resample:

mean(x.nonparbs1, trim=.2)

## [1] 87.83333
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Introduction: Nonparametric bootstrap

Repeat the calculation a large number of times:

x.nonparbs10000 <- replicate(10000,

mean(sample(x, size=10, replace=TRUE), trim=.2))

sd(x.nonparbs10000)

## [1] 5.419144
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Introduction: Nonparametric bootstrap

Problem! The outlier can appear several times in a

resample, allowing it to enter the calculation of the

estimate  inflation of the standard error estimate.

e.g. standard error of sample mean:

xbar10000 <- replicate(10000,

mean(sample(x, size=10, replace=TRUE)))

sd(xbar10000) # compare with 2.17

## [1] 8.127203
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Confidence Intervals: Normal type

1. Estimate the standard error of θ̂ using the

nonparametric bootstrap: ŝ

2. Interval endpoints: θ̂ ± ŝzα/2

where zα is the α upper percentile of the standard normal

distribution.

This technique obviously requires that the distribution of θ̂

be well approximated by normality (which is often not

true).
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Basic Confidence Intervals

To estimate θ with a symmetric (1− 2α) confidence

interval centered at θ̂, we need to find t in

P (θ̂ − t ≤ θ ≤ θ̂ + t| population) = 1− 2α.

Bootstrap principle: approximate the above equation with

P (
̂̂
θ − t ≤ θ̂ ≤ ̂̂

θ + t| sample) = 1− 2α. (1)

The solution, t̂: (1− 2α) percentile of |θ̂ − ̂̂
θ|.

Basic confidence interval:

θ̂ ± t̂.
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Studentized Confidence Intervals

These confidence intervals are require an estimate of the

standard deviation of θ̂.

θ̂ ± ŝt̂

where t̂ is the 1− 2α percentile of the distribution of

| ̂̂θ − θ̂|̂̂s .
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Studentized Confidence Intervals

The standard deviation estimate ŝ need not be consistent.

When regularity conditions are satisfied by the data, these

intervals can be much more accurate than the basic

intervals. (Unfortunately, conditions are not nearly always

satisfied.)
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Percentile Confidence Intervals

α and 1− α percentiles of the distribution of
̂̂
θ.

Originally proposed by Efron (1979)

Efron (1987) discovered a way of improving confidence

interval accuracy using what he called accelerated bias

correction (BCa).

BCa intervals are often more accurate than percentile

intervals, but can be unstable.
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Implementation using the boot() library
(Canty, 2002)

The following data which were collected during an escape

drill on an oil platform: times (in seconds) for a sample of

individuals to escape.

escape <-

c(389, 356, 359, 363, 375, 424, 325, 394, 402, 373,

373, 370, 364, 366, 364, 325, 339, 393, 392, 369,

374, 359, 356, 403, 334, 397)

34



Implementation

How much warning time is necessary to be almost certain

that everyone could escape during an emergency?

A possible measure: θ = µ+ 4σ,

where µ and σ are the escape time mean and standard

deviation. We can estimate θ with θ̂ = X̄ + 4s.

In order to use higher order bootstrap confidence intervals,

we need an estimate of the variance of θ̂.
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Implementation

In this case, we could do an exact calculation, but it is

tedious. Use of an iterated bootstrap to estimate the

variance is one alternative.

Another alternative is to use a delta method. If the data

are normally distributed, we can show that

Var(θ̂)
.

=
σ2

n
+

8σ2

n− 1
−

σ2

(n− 1)2
.

Estimate with:

s2

n
+

8s2

n− 1
−

s2

(n− 1)2
.
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Implementation

R Function to compute sample statistic and variance

estimate:

escape.fun <- function (data, indices) {

x <- data[indices]

xbar <- mean(x)

s2 <- var(x)

s <- sqrt(s2)

n <- length(x)

c(xbar + 4*s, s2/n + 8*s2/(n-1) - s2/(n-1)^2)

}
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Implementation

Perform resampling and calculation of the statistics for

each resample using the boot() function:

library(boot)

escape.boot <- boot(escape, escape.fun, R=999)
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Implementation

Output:

escape.boot

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = escape, statistic = escape.fun, R = 999)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 468.1267 -2.899631 13.78719
## t2* 211.7408 -8.183151 55.70149
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Implementation

Observations:

The bootstrap standard error of the statistic is roughly the

square root of the variance estimate.

The estimate of θ is biased. This is due, largely, to the fact

that s is a biased estimator for σ.

Confidence intervals can now be computed using the

boot.ci() function.
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Implementation
boot.ci(escape.boot)

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 999 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = escape.boot)
##
## Intervals :
## Level Normal Basic Studentized
## 95% (444.0, 498.0 ) (445.0, 497.8 ) (449.2, 508.8 )
##
## Level Percentile BCa
## 95% (438.4, 491.3 ) (444.0, 502.9 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable
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A GLM example

A sequence of trials were conducted using a detector.

In each trial, a number of objects were to be detected.

The observed number of detected objects were recorded

for each trial.

The quality of the detector can be assessed by computing

the proportion detected:

p̂ =
# Observed

# Expected

A normal approximation can be used to obtain the

confidence interval. (Bootstrap not needed.)
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A GLM example

The data:

detect <- read.csv("testdata.csv", header=TRUE)

head(detect)

## Observed Expected

## 1 3 3

## 2 1 1

## 3 5 7

## 4 12 14

## 5 6 6

## 6 23 23
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A GLM example

Fitting the binomial model using glm() (this is overkill, but

instructive)

detect.glm <- glm(I(Observed/Expected) ~ ., data=detect,

weights=Expected, family=binomial)

summary(detect.glm)$coef

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.320604 0.1824228 12.72102 4.519306e-37
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A GLM example

Problem! The sample of observed detections might be

underdispersed relative to the binomial distribution.

If so, we could use quasi-likelihood. But this does not have

the same simple interpretation.
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What is value of the dispersion parameter?

detect.glm <- glm(I(Observed/Expected) ~ .,

data=detect, weights=Expected,

family=quasibinomial)

disp <- summary(detect.glm)$dispersion

disp

## [1] 0.7093484

This is less than 1, but is it significantly less? We can use

the bootstrap to find out.
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Bootstrapping the dispersion parameter

disp.fn <- function(data, indices) {

Observed <- data$Observed[indices]

Expected <- data$Expected[indices]

bootdata <- data.frame(Observed, Expected)

detect.glm <- glm(I(Observed/Expected) ~ .,

data=bootdata, weights=Expected,

family=quasibinomial)

disp <- summary(detect.glm)$dispersion

disp

}

disp.boot <- boot(data=detect, statistic=disp.fn, R=999)
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Bootstrapping the dispersion parameter
boot.ci(disp.boot)

## Warning in boot.ci(disp.boot): bootstrap variances needed

for studentized intervals

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 999 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = disp.boot)
##
## Intervals :
## Level Normal Basic
## 95% ( 0.4051, 1.0335 ) ( 0.3809, 0.9889 )
##
## Level Percentile BCa
## 95% ( 0.4298, 1.0378 ) ( 0.4827, 1.2670 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable
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But do we believe the confidence intervals?

The confidence intervals do not all tell us the same thing.

BCa is supposedly the most accurate ... usually. Is it in

this case?

Since it is telling us that the dispersion parameter is not

significantly different from 1, let’s suppose the binomial

model is true and do a parametric bootstrap to see how

accurate the BCa interval for dispersion is.
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A model for the parametric bootstrap

Binomial model parameters:

p <- exp(2.32)/(1+exp(2.32))
n <- length(detect$Expected)
p; n

## [1] 0.9105199
## [1] 30

A small bootstrap simulation study:

Create 100 simulated binomial data sets, and construct 95% BCa
confidence intervals for the dispersion parameter in each case.
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A small bootstrap simulation study

> ncorrect <- 0

+ for (i in 1:100) {

+ detectboot <- rbinom(n, size=detect$Expected, prob=p)

+ detectboot <- data.frame(Observed=detectboot,

+ Expected=detect$Expected)

+ disp.boot2 <- boot(data=detectboot, statistic=disp.fn,

+ R=499)

+ ci <- boot.ci(disp.boot2, type="bca")$bca[4:5]

+ ncorrect <- ncorrect + (ci[1]<1)*(ci[2]>1)

+ }

+ ncorrect

[1] 94
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Conclusion of simulation study

The BCa intervals appear to be reliable in this case.

It seems okay to believe the original data are not

underdispersed.
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Bootstrap failure

We now give some examples where the bootstrap is invalid.

In some cases, it is possible to remedy the problem.∗

∗This discussion follows parts of Section 3.6 of Shao and Tu (1995).
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Nonsmooth functions of the sample mean

The bootstrap is often consistent for smooth functions of

the sample mean.

The smoothness condition is necessary.

E.g., consider the parameter θ = g(µ) =
√
|µ|.

The statistic is θ̂ =
√
|X̄|.
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Nonsmooth functions of the sample mean

When µ = 0,

Percentile confidence intervals for
√
|µ| never contain 0.

BCa confidence intervals cannot be computed.

Studentized 95% confidence intervals cannot always be

computed.

When n = 100, 47% of the 95% basic intervals contain 0.
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Nonsmooth functions of the sample mean

What is causing the problem?

−1.0 −0.5 0.0 0.5 1.0

0.
0
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0.
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1.
0

µ

µ

A nonsmooth function of the mean
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What is causing the problem? (Percentile Case)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ

µ
A nonsmooth function of the mean

X X  are always positive

−> percentile CI can't work
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What is causing the problem? (Basic Case)

Deviations between X̄ and µ are similar to deviations

between ̂̄
X and X̄...

−1.0 −0.5 0.0 0.5 1.0

0.0
0.2

0.4
0.6

0.8
1.0

µ

µ

A nonsmooth function of the mean

X X

X − 0 X − X
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What is causing the problem? (Basic Case)

... which implies that deviations between
√
|X̄| and

√
|µ|

tend to be larger than deviations between
√̂̄
X and

√
|X̄|.

−1.0 −0.5 0.0 0.5 1.0

0.0
0.2

0.4
0.6

0.8
1.0

µ

µ

A nonsmooth function of the mean

X X

X − 0

X − X
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What is causing the problem? (Basic Case)

√
|X̄| is not converging to 0 fast enough, compared with

the speed at which
√
| ̂̄X| is converging to

√
|X̄|.

Remedy: Increase sample size used to calculate
√
|X̄| to

speed up convergence.

Really?!!
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What is causing the problem? (Basic Case)

Actual Remedy: Slow down convergence of
√
| ̂̄X| by

reducing bootstrap sample size.

i.e. Use subsampling.

Percentage of correct basic CIs when m = 25: 71%

Percentage correct when m = 15: 85%.

Percentage correct when m = 10: 91%.
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Functions of the mean with stationary points

Smooth functions of the mean usually pose no difficulty for

the bootstrap, but not always!

Again, suppose X1, X2, . . . , Xn are independent and

identically distributed with mean µ and variance σ2.

The parameter of interest is θ = µ2 and the statistic is

θ̂ = X̄2.

When µ = 0, all percentile confidence intervals have 0%

coverage, and 95% basic intervals have over 99% coverage.
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Functions of the mean with stationary points

What is causing the problem?

−1.0 −0.5 0.0 0.5 1.0
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A function with a stationary point at 0

(X)2 − 02

X2 − (X)2
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Maximum order statistics (Knight, 1989)

Suppose X1, X2, . . . , Xn are independent uniform random

variables on the interval [0, θ]. The maximum likelihood

estimator for θ is X(n), the maximum data point.

P (θ −X(n) ≤ 0) = 0.

The bootstrap estimate:

P (X(n) − X̂(n) ≤ 0) = 1− (1− n−1)n→ 1− e−1 6= 0.

Once again, subsampling will alleviate this difficulty.
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Dependent data

The conventional form of the bootstrap assumes

independent and identically distributed data.

In the case of time series data, the ordinary bootstrap fails

badly because of serial dependence.

The most popular method for handling stationary time

series data is the so-called moving blocks bootstrap:

resample subsequences of consecutive observerations

(blocks) ...

sounds like subsampling
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Summary

Bootstrapping can be used to obtain confidence intervals and to test
hypotheses in situations where analytic calculations are difficult or
impossible.

Studentized and BCa confidence intervals are preferred ... when they
work.

The bootstrap is not robust to the influence of outliers.

The bootstrap can fail for many kinds of statistics: exercise caution
when working with extremes, absolute values, ...

The bootstrap requires remediation when data are not independent.

Subsampling is often a simple, though inefficient, remedy for bootstrap
failure.
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Pop Quiz

Q1: Which of the 4 statistics mentioned in the preamble

will the bootstrap work well on?

Q2: Which will cause trouble for the bootstrap? Why?
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