A Very Basic Introduction to R - Part II

Vectors
$>y<-c(5,7,3,4,2,4,8,1)$
$>\max (y)$
[1] 8
$>\min (y)$
[1] 1
> which.min(y) \# which element of y is the minimum?
[1] 8
> which.max (y)
[1] 7
> sort(y) \# sort y in increasing order
[1] 12344578
> sort (y, decreasing=FALSE)
[1] 12344578
$>y<6$
[1] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
> y[y < 6] \# list all elements smaller than 6
[1] 534241

Basic Scatterplots

$>x<-1: 8$
> plot(x, y, col="red") \# plot y against x

> plot (y ~ $\mathrm{x}, \mathrm{col}=2$) \# plot y against x
> lines (y ~ x, col=3) \# add a broken line to the plot
$>$ abline(h=4.5, col=4) \# add a horizontal line through x=4.5
> abline(v=3, col=1) \# add a vertical line through y=3


```
> z <- sort(y)
```

$>$ \# changing range of x and y axes:
> plot $\left(z^{\sim}\right.$ x, $\left.y \operatorname{lim=c}(0,12), x \operatorname{lim=c}(-1,11)\right)$
> abline(0, 1, col="orange") \# line of slope 1 and intercept 0

$>x 5<-x[x<5]$
$>y 5<-y[x<5]$
> \# change plotting character to a dot:
> plot (y5 ~ x5, col="purple", pch=16)

Exercises

1. Assign the data $1,4,3,7,8,15,22,18,19$ to a vector called z.
2. Find the maximum and minimum of z.
3. Which element is the maximum?
4. Sort z in increasing order.
5. Sort z in decreasing order.
6. Assign $1,3,5,7,2,4,6,8,9$ to a vector called y.
7. Plot z against y, with z on the vertical axis and y on the horizontal axis. Re-do the plot using green plotting characters.
8. Overlay the plot with a red horizontal line through $z=2$.
9. Overlay the plot with a blue line having intercept 3 and slope 1.5.
10. Assign 21, 3, 17, 9, 11 to x and $2,5,4,5,9$ to the vector y.
11. Obtain a scatterplot of y against x, using red for the plotting characters.
12. Overlay the plot with a black line having intercept 11.5 and slope 0.3 .
13. Assign the sorted values of x to z, and plot y against z, using yellow plotting characters.
14. Assign the elements of z that are larger than 3 to a vector called $z 3$. Assign the corresponding elements of y to a vector called $y 3$.
15. Plot $z 3$ against $y 3$, using a black dot as the plotting character.
16. Repeat the previous plot, but this time, ensure that the range of the vertical axis is from 0 through 25 and the range of the horizontal axis from -5 through 15.
