Coupling and Weak Convergence

Richard Lockhart (Reg and Peter)

May 30, 2019

Today's Subjects

- Reg.
- Guttorp, Kulperger, and Lockhart. (1985) A coupling proof of weak convergence, J Appl Prob, 22, 447-453
- Guttorp and Kulperger. (1984) Statistical inference for some Volterra population processes in a random environment. CJS, 13, 289-302.
- Kulperger and Guttorp. (1981) Criticality conditions for some random environment population processes. Stoch Proc Appl, 11, 207-212.
- Coupling
- Wasserstein metric, Hungarian construction, perfect sampling.

Today's Subjects

- Reg.
- Guttorp, Kulperger, and Lockhart. (1985) A coupling proof of weak convergence, J Appl Prob, 22, 447-453
- Guttorp and Kulperger. (1984) Statistical inference for some Volterra population processes in a random environment. CJS, 13, 289-302.
- Kulperger and Guttorp. (1981) Criticality conditions for some random environment population processes. Stoch Proc Appl, 11, 207-212.
- Coupling
- Wasserstein metric, Hungarian construction, perfect sampling.
- We were children at the time.

Reg: 1992 Edmonton

Reg and Richard

Motivating problem

- Reg and Peter studying population processes.
- Stochastic version of Volterra differential equation models
- One example: population X_{t} driven by Brownian Motion B_{t} :

$$
d X_{t}=X_{t}\left(\mu-\lambda X_{t}\right) d t+\sigma X_{t} d B_{t}
$$

- Estimate μ, λ and σ based on continuous data on [$0, T$].
- Take logs: $Z_{t}=\log X_{t}$ satisfies

$$
d Z_{t}=\left(\mu-\sigma^{2} / 2-\lambda e^{Z_{t}}\right) d t+\sigma d B_{t}
$$

- I think I got involved over the case $\mu=\sigma^{2} / 2$.

Coupling

- Slutsky: If $X_{n} \Rightarrow X$ and $d\left(Y_{n}, X_{n}\right) \rightarrow 0$ then $Y_{n} \Rightarrow X$.
- Random elements of a metric space of functions, say.
- Application requires X_{n} and Y_{n} to live in same probability space.
- Often X_{n} is an approximation to Y_{n} like a Taylor expansion.
- For us: know law of X_{n} and $X_{n} \Rightarrow X$.
- And Y_{n} is some process with similar dynamics to X_{n}.
- Coupling strategy: pick special probability space Ω.
- Construct X_{n}, Y_{n} on Ω so that $d\left(X_{n}, Y_{n}\right)$ small, probably.

Discrete Time example

- Y is random walk

$$
\begin{aligned}
& P[Y(n+1)=k+1 \mid Y(n)=k]=\frac{1}{2}+r(k) \\
& P[Y(n+1)=k-1 \mid Y(n)=k]=\frac{1}{2}-r(k)
\end{aligned}
$$

- In application $r(k)$ small when k large.
- X is random walk with $r(0)=1 / 2$ and $r(k)=0$ for $k>0$.
- X is absolute value of fair random walk so for $X_{n}(t) \equiv X(n t) / \sqrt{n}$

$$
X_{n} \Rightarrow|B|
$$

- Same thing true for $Y_{n}(t)=Y(n t) / \sqrt{n}$ provided
(1) $\forall j(r(j) \geq 0)$;
(2) $\lim _{j \rightarrow \infty} j r(j)=0$;
(3) $\inf \{r(j): j<0\}>0$.

Easy strategy

- Construct X and Y so that they move in the same direction as often as possible.
- Use a single set $\left\{U_{1}, U_{2}, \cdots\right\}$ of iid Uniforms.
- Move $X(n)$ up if $U_{n}<1 / 2$ (for $\left.X(n)>0\right)$.
- Move $Y(n)$ up if $U_{n}<1 / 2+r(Y(n))$.

Simulation $n=20, r=c / k^{2}$

Simulation $n=1000$

Simulation $n=10000$

Difference $n=10000$

Simulation $n=100000$

Difference $n=100000$

Reg Letter 1981 Nov

MCMASTER UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
Telephone: (416) $525-9140$
Dear Richard
This is a follow up to last week. This is the random walk with typographical corrections. * I only went over the earlier version hurriedly so that an "approximate final" copy would get to you before $20 / 11 / 81$.

Also when I spoke to you last month I forgot to ask if I left a silver fountain sen in Vancower last summer.

Reg

* I maker no guarantees on no more typographical on other eros - but I think it is okay now.

Nov 1981 Version

§1 Introduction.

We consider a random walk which takes jumps of 1 or -1 , and which has a positive drift. We obtain conditions on the drift which yield a positive normal limit law. We first consider the random walks refected at 0 . The method used is to couple the process to an ordinary (no drift) random walk reflected at the origin, for which the positive normal limit law follows by the central limit theorem. We show the difference between the two processes is small at a good enough rate. Using Doob's decomposition (Chung (1974), p. 321) and then examining the increasing part was not useful here.

Coupling arguments, when they work, have a beauty of simplicity. The general idea is to associate with a process of interest, another process, or sequences of processes, which are simpler, and then if possible transfer over some property to the original process of interest. One example is in Hoel, Port and Stone (1972, p. 73). Another for a continuous time process defined by a stochastic differential equation is given in Kulperger and Guttorp (1981).
§2 A Reflected Random Walk with Drift

Notes from August 1981?
Diffusion
Problem: Constructing Solutions of
$d z_{t}=f\left(z_{t}\right) d t+d B_{t} \quad$ where f ie a avian monotone decreasing function. $f \geq 0$.

A solution is a proven $\left\{z_{\epsilon}: t \in\langle g \infty)\right\}$
adapted to the notural bt filtration which is
ii) contin wows
(ii) Strong Markov
(iii) satisfies $z_{t}=\int_{0}^{t} f\left(z_{s}\right) d s+B_{t}$ foll son almost all w.

Proof of Theorem:
Bread x ${ }^{(}\binom{(0, \infty)}{n}$ perator $f_{x}: C(0, \infty) \rightarrow C[0, \infty)$ is defined by

$$
\int_{x} y(t)=\int_{0}^{t} f(y(s)) d s+x_{t}
$$

Properties of 5 :
(i) $y_{1} \leqslant y_{2} \Rightarrow S_{x} y_{1} \geq S_{x} y_{2}$
(ii) S_{x} carries bounded male fins y to $([0, \infty)$.
(iii) S_{n} is jointly male in x a nd y.

We define a family C_{∞}, U_{∞} of mope indexed by comntafle ordinal α by transfinite induction

$$
\begin{aligned}
& L_{0} x=x ; U_{0} x=S_{x} x \\
& L_{\alpha} x=S_{x}\left(\inf _{\beta<\alpha} U_{8} x\right) ; \quad U_{x}(x)=S_{x} L_{\alpha} x
\end{aligned}
$$

March 1982 Version

SUMMARY

A diffusion X_{t} with non-negative drift $h(x)$ and variance l is coupled to a reflected Brownian motion. The coupling is used to find conditions under which $t^{-1 / 2} X_{t}$ has a half-normal limit law as $t \rightarrow \infty$,

Accepted 1985 Version

Abstract

Weak convergence to reflected Brownian motion is deduced for certain upwardly drifting random walks by coupling them to a simple reflected random walk. The argument is quite elementary, and also gives the right conditions on the drift. A similar argument works for a corresponding continuous-time problem.

RANDOM WALK; DIFFUSIONS WITH DRIFT

1. Introduction

Guttorp and Kulperger (1984) studied estimation problems for some Volterratype population processes in a random environment. In one situation, attention was focused on the behavior of a process with a steady upwards drift, diminishing as the process moved far above the origin. A discrete approximation is a random walk with drift. In this note we study the weak convergence of certain Harris random walks to reflected Brownian motion, finding sufficient and essentially necessary conditions for the convergence. The proofs are obtained by coupling, i.e. by constructing the process of interest on the same probability space as a reflected fair random walk, and bounding the difference between the processes.

Other kinds of coupling

- Couple two Markov Chains X_{n}, Y_{n} together with X_{n} stationary and both with same stationary transitions.
- Run independently till they collide; then couple together to show Y_{n} is asymptotically stationary.
- Perfect sampling / coupling from the past.
- Use Uniform U_{-1} to determine transitions from X_{-1} to X_{0} and U_{-2} for X_{-2} to X_{-1}.
- Keep U_{i} fixed and go back in time far enough that every starting point leads to same value of X_{0}.
- The Hungarian construction: on a single probability space construct Brownian Bridge and emprical process so two are close together.
- Used to measure distance between distributions; derive goodness-of-fit tests.

Take away messages

- Research is slow.

Take away messages

- Research is slow.
- And fun with friends.

Take away messages

- Research is slow.
- And fun with friends.
- E-mail is helpful.

Take away messages

- Research is slow.
- And fun with friends.
- E-mail is helpful.
- I am grateful to Reg for years of friendship.

