Coupling and Weak Convergence

Richard Lockhart (Reg and Peter)

May 30, 2019

Richard Lockhart (Reg and Peter) V]:1e30}



Today's Subjects

@ Reg.
e Guttorp, Kulperger, and Lockhart. (1985) A coupling proof of weak
convergence, J Appl Prob, 22, 447-453

e Guttorp and Kulperger. (1984) Statistical inference for some Volterra
population processes in a random environment. CJS, 13, 289-302.

o Kulperger and Guttorp. (1981) Criticality conditions for some random
environment population processes. Stoch Proc Appl, 11, 207-212.

@ Coupling

@ Wasserstein metric, Hungarian construction, perfect sampling.
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We were children at the time.
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Reg and Richard
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Motivating problem

Reg and Peter studying population processes.

Stochastic version of Volterra differential equation models

One example: population X; driven by Brownian Motion B;:

dXt = Xt(/L - )\Xt)dt + O'XtdBt

Estimate i, A and o based on continuous data on [0, T].

Take logs: Z; = log X; satisfies

4z, = (u - Aezt) dt + odB:.

| think | got involved over the case y = 02/2.
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Coupling

Slutsky: If X, = X and d(Y,, X,) — 0 then Y, = X.

Random elements of a metric space of functions, say.
Application requires X, and Y}, to live in same probability space.
Often X, is an approximation to Y}, like a Taylor expansion.

For us: know law of X, and X, = X.

And Y, is some process with similar dynamics to X,,.

Coupling strategy: pick special probability space Q.

Construct X,,Y, on Q so that d(X,, Y,) small, probably.
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Discrete Time example

@ Y is random walk

PIY(n+1) =kt 1] Y(n) =K = 5+ r(K)

1
PlY(n+1)=k—=1|Y(n)=k] = 5 — r(k).
@ In application r(k) small when k large.
e X is random walk with r(0) = 1/2 and r(k) =0 for k > 0.
e X is absolute value of fair random walk so for X,(t) = X(nt)/\/n

Xn = |B].

@ Same thing true for Y,(t) = Y(nt)/+/n provided
Q Vj(r(j) 2 0);
(2] |imj—>oo,jr(.j) =0;
 inf{r(j):j <0} >0.
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Easy strategy

@ Construct X and Y so that they move in the same direction as often
as possible.

Use a single set {U1, Us, - - - } of iid Uniforms.
Move X (n) up if U, < 1/2 (for X(n) > 0).
Move Y(n) up if U, < 1/2 + r(Y(n)).
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Simulation n = 20, r = c/k?
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Simulation n = 1000
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Simulation n = 10000
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Difference n = 10000
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Simulation n = 100000
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Difference n = 100000
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Nov 1981 Version

§1 Introduction.

We consider a random walk which takes jumps of 1 or -1, and which has a
positive drift. We obtain conditions on the drift which yield a positive
normal limit law. We first consider the random walks ref‘fcted at 0. The
method used is to couple the process to an ordimary (mo drift) random walk
reflected at the origin, for which the positive normal limit law follows by
the central limit theorem. We show the difference between the two processes
is small at a good emough rate. Using Doob's decomposition (Chung (1974),

P. 321) and then examining the increasing part was not useful here.

Coupling arguments, when they work, have a beauty of simplicity. The
general idea is to associate with a process of interest, another process, or
sequences of processes, which are simpler, and then if possible transfer
over some property to the original process of interest. One example is in
Hoel, Port and Stone (1972, p. 73). Another for a continuous time process
defined by a stochastic differential equation is given in Kulperger and

Guttorp (1981).

§2 A Reflected Random Walk with Drift
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Notes from August 19817
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MoreNotes
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March 1982 Version

SUMMARY

A diffusion Xt with non-negative drift h(x) and variance 1 is

coupled to a reflected Brownian motion. The coupling is used to find

1z

conditions under which t~ Xt has a half-normal limit law as t > o .
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Accepted 1985 Version

Abstract

Weak convergence to reflected Brownian motion is deduced for certain
upwardly drifting random walks by coupling them to a simple reflected random
walk. The arg is quite el tary, and also gives the right conditions on
the drift. A similar argument works for a corresponding continuous-time
problem.

RANDOM WALK; DIFFUSIONS WITH DRIFT

1. Introduction

Guttorp and Kulperger (1984) studied estimation problems for some Volterra-
type population processes in a random environment. In one situation, attention
was focused on the behavior of a process with a steady upwards drift,
diminishing as the process moved far above the origin. A discrete approximation
is a random walk with drift. In this note we study the weak convergence of
certain Harris random walks to reflected Brownian motion, finding sufficient and
essentially necessary conditions for the convergence. The proofs are obtained by
coupling, i.e. by constructing the process of interest on the same probability
space as a reflected fair random walk, and bounding the difference between the
processes.
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Other kinds of coupling

@ Couple two Markov Chains X,,, Y, together with X, stationary and
both with same stationary transitions.

@ Run independently till they collide; then couple together to show Y,
is asymptotically stationary.

@ Perfect sampling / coupling from the past.

@ Use Uniform U_; to determine transitions from X_1 to Xy and U_»
for X_o to X_1.

o Keep U; fixed and go back in time far enough that every starting
point leads to same value of Xj.

@ The Hungarian construction: on a single probability space construct
Brownian Bridge and emprical process so two are close together.

@ Used to measure distance between distributions; derive
goodness-of-fit tests.
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Take away messages

@ Research is slow.
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@ And fun with friends.
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@ Research is slow.
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@ E-mail is helpful.
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Take away messages

Research is slow.
And fun with friends.
E-mail is helpful.

| am grateful to Reg for years of friendship.
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