On the relationship between data sharpening and Firth's adjusted score function

John Braun & Patrick Brown

Two recipes - each data point is adjusted differently

Two recipes - each data point is adjusted differently

Framework lacking

Data sharpening

Two recipes - each data point is adjusted differently

Framework lacking

Firth's adjusted score function

Data sharpening

Two recipes - each data point is adjusted differently

Framework lacking

Firth's adjusted score function

Derivative estimation - new recipes

Data sharpening

Two recipes - each data point is adjusted differently

Framework lacking

Firth's adjusted score function

Derivative estimation - new recipes

Unresolved extensions

Data sharpening

Two recipes - each data point is adjusted differently

Framework lacking

Firth's adjusted score function

Derivative estimation - new recipes

Unresolved extensions

Standard asymptotics - Wand & Jones (1995)

Data sharpening - Peter Hall

 $Preprocessing \Longrightarrow standard \text{ software (KDE, N-W)}$

 $Preprocessing \Longrightarrow standard \text{ software (KDE, N-W)}$

Reducing bias & enforcing constraints

 $Preprocessing \Longrightarrow standard \text{ software (KDE, N-W)}$

Reducing bias & enforcing constraints

Density estimation & nonparametric regression

 $Preprocessing \Longrightarrow standard \text{ software (KDE, N-W)}$

Reducing bias & enforcing constraints

Density estimation & nonparametric regression

Reduce bias without inflating variance

Preprocessing \implies standard software (KDE, N-W)

Reducing bias & enforcing constraints

Density estimation & nonparametric regression

Reduce bias without inflating variance

No reliance on data greedy alternatives

$$Y_i = g(X_i) + e_i \qquad \qquad X_i \sim f$$

$$Y_i = g(X_i) + e_i \qquad X_i \sim f$$

KDE: $\hat{f}(x) = \frac{1}{n} \sum K_h(X_i - x) \qquad \mathbf{E}[\hat{f}(x)] = f(x) + O(h^2)$

$$Y_{i} = g(X_{i}) + e_{i} \qquad X_{i} \sim f$$

KDE: $\hat{f}(x) = \frac{1}{n} \sum K_{h}(X_{i} - x)$
E $[\hat{f}(x)] = f(x) + O(h^{2})$
N-W: $\hat{g}(x) = \frac{\sum_{i} K_{h}(X_{i} - x)Y_{i}}{\sum K_{h}(X_{i} - x)}$
E $[\hat{g}(x)] = g(x) + O(h^{2})$

$$Y_i = g(X_i) + e_i \qquad X_i \sim f$$

KDE: $\hat{f}(x) = \frac{1}{n} \sum K_h(X_i - x) \qquad \mathbf{E}[\hat{f}(x)] = f(x) + O(h^2)$

N-W:
$$\hat{g}(x) = \frac{\sum_{i} K_h(X_i - x) Y_i}{\sum K_h(X_i - x)}$$
 $\mathbf{E}[\hat{g}(x)] = g(x) + O(h^2)$

DS for N-W: $Y_i \longrightarrow Y_i^{\star} = Y_i + [Y_i - \hat{g}(X_i)]$

$$Y_{i} = g(X_{i}) + e_{i} \qquad X_{i} \sim f$$
KDE: $\hat{f}(x) = \frac{1}{n} \sum K_{h}(X_{i} - x)$
E $[\hat{f}(x)] = f(x) + O(h^{2})$
N-W: $\hat{g}(x) = \frac{\sum_{i} K_{h}(X_{i} - x)Y_{i}}{\sum K_{h}(X_{i} - x)}$
E $[\hat{g}(x)] = g(x) + O(h^{2})$
DS for N-W: $Y_{i} \longrightarrow Y_{i}^{\star} = Y_{i} + [Y_{i} - \hat{g}(X_{i})]$
DS for N-W: $Y_{i} \longrightarrow Y_{i}^{\star} = Y_{i} + [Y_{i} - \hat{g}(X_{i})]$

DS for KDE:
$$X_i \longrightarrow X_i^{\star} = \frac{\sum_j K_h(X_j - X_i)X_j}{\sum_j K_h(X_j - X_i)}$$

$$Y_{i} = g(X_{i}) + e_{i} \qquad X_{i} \sim f$$
KDE: $\hat{f}(x) = \frac{1}{n} \sum K_{h}(X_{i} - x)$
E $[\hat{f}(x)] = f(x) + O(h^{2})$
N-W: $\hat{g}(x) = \frac{\sum_{i} K_{h}(X_{i} - x)Y_{i}}{\sum K_{h}(X_{i} - x)}$
E $[\hat{g}(x)] = g(x) + O(h^{2})$
DS for N-W: $Y_{i} \longrightarrow Y_{i}^{\star} = Y_{i} + [Y_{i} - \hat{g}(X_{i})]$
DS for KDE: $X_{i} \longrightarrow X_{i}^{\star} = \frac{\sum_{j} K_{h}(X_{j} - X_{i})X_{j}}{\sum_{j} K_{h}(X_{j} - X_{i})}$

DS for derivative estimation?

Density Estimation:

Density Estimation:

"Cluster design points near peaks"

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs"

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator"

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Origins unclear

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Origins unclear

Framework lacking

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Origins unclear

Framework lacking

Note: $\hat{f}(x)$, $\hat{g}(x)$ solve score equations

Parametric setting: $U(\theta) = \nabla \ell(\theta)$ $\ell(\theta) = \log \mathcal{L}(\theta)$

Parametric setting: $U(\theta) = \nabla \ell(\theta)$ $\ell(\theta) = \log \mathcal{L}(\theta)$

MLE: $\hat{\theta}$ with bias $b(\theta)$

Parametric setting: $U(\theta) = \nabla \ell(\theta)$ $\ell(\theta) = \log \mathcal{L}(\theta)$ MLE: $\hat{\theta}$ with bias $b(\theta)$ Firth's idea: reduce bias of $\hat{\theta}$ by adjusting $U(\theta)$

 $U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$

Parametric setting: $U(\theta) = \nabla \ell(\theta)$ $\ell(\theta) = \log \mathcal{L}(\theta)$ MLE: $\hat{\theta}$ with bias $b(\theta)$ Firth's idea: reduce bias of $\hat{\theta}$ by adjusting $U(\theta)$

 $U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$

Binomial logistic regression - adjust the data

Parametric setting: $U(\theta) = \nabla \ell(\theta)$ $\ell(\theta) = \log \mathcal{L}(\theta)$ MLE: $\hat{\theta}$ with bias $b(\theta)$

Firth's idea: reduce bias of $\hat{\theta}$ by adjusting $U(\theta)$ $U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$

Binomial logistic regression - adjust the data

Cox & Reid (1372), Barndorff-Nielsen. (561), McCullagh and Tibshirani (261), Firth (2337)

$$U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$$
Adjusting the Score Function

$$U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$$

Bias: $b(\theta) = \mathbf{E}[\hat{\theta} - \theta]$

Adjusting the Score Function

$$U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$$

Bias: $b(\theta) = \mathbf{E}[\hat{\theta} - \theta]$
$$\hat{\theta} - \theta = \frac{U(\theta)}{i(\theta)} + \frac{1}{2} \left[\frac{U(\theta)}{i(\theta)}\right]^2 \frac{\ddot{U}(\theta)}{i(\theta)}$$

$$U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$$

Bias: $b(\theta) = \mathbf{E}[\hat{\theta} - \theta]$
 $\hat{\theta} - \theta = \frac{U(\theta)}{i(\theta)} + \frac{1}{2} \left[\frac{U(\theta)}{i(\theta)}\right]^2 \frac{\ddot{U}(\theta)}{i(\theta)}$

Standard: both terms contribute to bias

$$U^{\star}(\theta) = U(\theta) - i(\theta)b(\theta)$$

Bias: $b(\theta) = \mathbf{E}[\hat{\theta} - \theta]$

$$\hat{\theta} - \theta = \frac{U(\theta)}{i(\theta)} + \frac{1}{2} \left[\frac{U(\theta)}{i(\theta)} \right]^2 \frac{\ddot{U}(\theta)}{i(\theta)}$$

Standard: both terms contribute to bias

Nonparametrics: second term is of lower order

$$U^{\star}(\theta) = U(\theta) - i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right]$$

$$U^{\star}(\theta) = U(\theta) - i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right]$$

$$\approx \, U(\theta) - \mathbf{E} \left[\, U(\theta) \right]$$

$$U^{\star}(\theta) = U(\theta) - i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right]$$

$$\approx \, U(\theta) - \mathbf{E} \left[\, U(\theta) \right]$$

\boldsymbol{U} will be a local likelihood score function

$$U^{\star}(\theta) = U(\theta) - i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right]$$

$$\approx U(\theta) - \mathbf{E} \left[U(\theta) \right]$$

U will be a local likelihood score function

Does this lead to an adjustment of the data?

$$Y_i = g(X_i) + e_i \qquad \theta_x = g(x)$$

$$Y_i = g(X_i) + e_i \qquad \theta_x = g(x)$$
$$\ell(\theta_x) = \sum K_h(X_i - x) \{Y_i - \theta_x\}^2$$

$$Y_i = g(X_i) + e_i \qquad \theta_x = g(x)$$

$$\ell(\theta_x) = \sum K_h(X_i - x) \{ Y_i - \theta_x \}^2$$

$$U(\theta_x) = -2\sum K_h(X_i - x)\{Y_i - \theta_x\}$$

$$Y_i = g(X_i) + e_i \qquad \theta_x = g(x)$$

$$\ell(\theta_x) = \sum K_h(X_i - x) \{ Y_i - \theta_x \}^2$$

$$U(\theta_x) = -2\sum K_h(X_i - x)\{Y_i - \theta_x\}$$

$$\hat{\theta}_x = \hat{g}(x) = \frac{\sum_i K_h(X_i - x) Y_i}{\sum K_h(X_i - x)}$$

$$Y_i = g(X_i) + e_i$$
 $\theta_x = g(x)$

$$\ell(\theta_x) = \sum K_h(X_i - x) \{ Y_i - \theta_x \}^2$$

$$U(\theta_x) = -2\sum K_h(X_i - x)\{Y_i - \theta_x\}$$

$$\hat{\theta}_x = \hat{g}(x) = \frac{\sum_i K_h(X_i - x) Y_i}{\sum K_h(X_i - x)}$$

$$\mathbf{E}\left[U(\theta_x)\right] \approx -nh^2 \sigma_K^2 \ddot{g}(x)$$

$$U^{\star}(\theta_x) = U(\theta_x) + nh^2 \sigma_K^2 \ddot{g}(x)$$

$$U^{\star}(\theta_x) = U(\theta_x) + nh^2 \sigma_K^2 \ddot{g}(x)$$
$$= -2\sum K_h (X_i - x) \{Y_i - \theta_x\} + nh^2 \sigma_K^2 \ddot{g}(x)$$

$$U^{\star}(\theta_x) = U(\theta_x) + nh^2 \sigma_K^2 \ddot{g}(x)$$

= $-2 \sum K_h(X_i - x) \{ Y_i - \theta_x \} + nh^2 \sigma_K^2 \ddot{g}(x)$
= $-2 \sum K_h(X_i - x) \{ Y_i - \theta_x \}$
+ $h^2 \sigma_K^2 \sum K_h(X_i - x) \ddot{g}(X_i)$

$$U^{\star}(\theta_{x}) = U(\theta_{x}) + nh^{2}\sigma_{K}^{2}\ddot{g}(x)$$

= $-2\sum K_{h}(X_{i} - x)\{Y_{i} - \theta_{x}\} + nh^{2}\sigma_{K}^{2}\ddot{g}(x)$
= $-2\sum K_{h}(X_{i} - x)\{Y_{i} - \theta_{x}\}$
 $+ h^{2}\sigma_{K}^{2}\sum K_{h}(X_{i} - x)\ddot{g}(X_{i})$
= $-2\sum K_{h}(X_{i} - x)\{Y_{i} - \frac{1}{2}h^{2}\sigma_{K}^{2}\ddot{g}(X_{i}) - \theta_{x}\}$

$$\begin{aligned} U^{\star}(\theta_{x}) &= U(\theta_{x}) + nh^{2}\sigma_{K}^{2}\ddot{g}(x) \\ &= -2\sum K_{h}(X_{i} - x)\{Y_{i} - \theta_{x}\} + nh^{2}\sigma_{K}^{2}\ddot{g}(x) \\ &= -2\sum K_{h}(X_{i} - x)\{Y_{i} - \theta_{x}\} \\ &+ h^{2}\sigma_{K}^{2}\sum K_{h}(X_{i} - x)\ddot{g}(X_{i}) \\ &= -2\sum K_{h}(X_{i} - x)\{Y_{i} - \frac{1}{2}h^{2}\sigma_{K}^{2}\ddot{g}(X_{i}) - \theta_{x}\} \\ &= -2\sum K_{h}(X_{i} - x)\{Y_{i}^{\star} - \theta_{x}\} \end{aligned}$$

Ideal Data Sharpening

$$Y_i^{\star} = Y_i - \frac{1}{2}h^2\sigma_K^2\ddot{g}(X_i)$$

Ideal Data Sharpening

$$Y_i^{\star} = Y_i - \frac{1}{2}h^2 \sigma_K^2 \ddot{g}(X_i)$$

Ideal Data Sharpening

$$\widehat{Y}_i^{\star} = Y_i - [\widehat{g}(X_i) - Y_i]$$

Data Sharpening (Hall)

$$X_i \sim f \qquad \theta_x = f(x)$$

$$X_i \sim f \qquad \theta_x = f(x)$$

$$\ell(\theta_x) = \sum K_h(X_i - x)\theta_x - n \int K(u - x)e^{\theta_x} du$$

**

0

$$X_i \sim f \qquad \theta_x = f(x)$$
$$\ell(\theta_x) = \sum K_h(X_i - x)\theta_x - n \int K(u - x)e^{\theta_x} du$$

$$U(\theta_x) = \sum \{K_h(X_i - x) - e^{\theta_x}\}$$

$$X_{i} \sim f \qquad \theta_{x} = f(x)$$

$$\ell(\theta_{x}) = \sum K_{h}(X_{i} - x)\theta_{x} - n \int K(u - x)e^{\theta_{x}} du$$

$$U(\theta_{x}) = \sum \{K_{h}(X_{i} - x) - e^{\theta_{x}}\}$$

$$\hat{\theta}_{x} = \log \left[\hat{f}(x)\right] \qquad \hat{f}(x) = \frac{1}{n} \sum K_{h}(X_{i} - x)$$

$$\begin{aligned} X_i &\sim f \qquad \theta_x = f(x) \\ \ell(\theta_x) &= \sum K_h(X_i - x)\theta_x - n \int K(u - x)e^{\theta_x} du \\ U(\theta_x) &= \sum \{K_h(X_i - x) - e^{\theta_x}\} \\ \hat{\theta}_x &= \log \left[\hat{f}(x) \right] \qquad \hat{f}(x) = \frac{1}{n} \sum K_h(X_i - x) \\ \mathbf{E}[U(\theta_x)] &\approx \frac{1}{2}nh^2 \sigma_K^2 \ddot{f}(x) \end{aligned}$$

$$U^{\star}(\theta_x) = U(\theta_x) - \frac{1}{2}nh^2\sigma_K^2\ddot{f}(x)$$

$$U^{\star}(\theta_x) = U(\theta_x) - \frac{1}{2}nh^2\sigma_K^2\ddot{f}(x)$$
$$= \sum \left\{ \left[K_h(X_i - x) - h_s^2\sigma_K^2\ddot{f}(x) \right] - e^{\theta_x} \right\}$$

$$U^{\star}(\theta_x) = U(\theta_x) - \frac{1}{2}nh^2\sigma_K^2\ddot{f}(x)$$
$$= \sum \left\{ \left[K_h(X_i - x) - h_s^2\sigma_K^2\ddot{f}(x) \right] - e^{\theta_x} \right\}$$
$$\approx \sum \left\{ K_h\left(\left[X_i + h_s^2\sigma_K^2\frac{\dot{f}(X_i)}{f(X_i)} \right] - x \right) - e^{\theta_x} \right\}$$

$$U^{\star}(\theta_x) = U(\theta_x) - \frac{1}{2}nh^2\sigma_K^2\ddot{f}(x)$$

= $\sum \left\{ \left[K_h(X_i - x) - h_s^2\sigma_K^2\ddot{f}(x) \right] - e^{\theta_x} \right\}$
 $\approx \sum \left\{ K_h\left(\left[X_i + h_s^2\sigma_K^2\frac{\dot{f}(X_i)}{f(X_i)} \right] - x \right) - e^{\theta_x} \right\}$
= $\sum \{ K_h(X_i^{\star} - x) - e^{\theta_x} \}$

$$X_i^{\star} = X_i + h_s^2 \sigma_K^2 \frac{f(X_i)}{f(X_i)}$$

Ideal Data Sharpening

$$X_i^{\star} = X_i + h_s^2 \sigma_K^2 \frac{f(X_i)}{f(X_i)}$$

Ideal Data Sharpening

$$\hat{X}_{i}^{\star} = X_{i} + \frac{\sum_{j} K_{h_{s}}(X_{j} - X_{i})(X_{j} - X_{i})}{\sum_{j} K_{h_{s}}(X_{j} - X_{i})}$$

$$X_i^{\star} = X_i + h_s^2 \sigma_K^2 \frac{f(X_i)}{f(X_i)}$$

Ideal Data Sharpening

$$\hat{X}_{i}^{\star} = X_{i} + \frac{\sum_{j} K_{hs}(X_{j} - X_{i})(X_{j} - X_{i})}{\sum_{j} K_{hs}(X_{j} - X_{i})}$$

$$= \frac{\sum_{j} K_{h_s}(X_j - X_i)X_j}{\sum_{j} K_{h_s}(X_j - X_i)}$$

Data Sharpening (Hall)

$$X_i^{\star} = X_i + h_s^2 \sigma_K^2 \frac{f(X_i)}{f(X_i)}$$

Ideal Data Sharpening

$$\hat{X}_{i}^{\star} = X_{i} + \frac{\sum_{j} K_{h_{s}}(X_{j} - X_{i})(X_{j} - X_{i})}{\sum_{j} K_{h_{s}}(X_{j} - X_{i})}$$

$$= \frac{\sum_{j} K_{h_s}(X_j - X_i)X_j}{\sum_{j} K_{h_s}(X_j - X_i)}$$

Data Sharpening (Hall)

Proof of concept

Derivative Estimation

$$Y_i = g(X_i) + e_i \qquad \theta_{1x} = g(x), \ \theta_{2x} = \dot{g}(x)$$

Derivative Estimation

$$Y_i = g(X_i) + e_i \qquad \theta_{1x} = g(x), \ \theta_{2x} = \dot{g}(x)$$
$$\ell(g, x) = \sum K_h(X_i - x) \{Y_i - g(X_i)\}^2$$

Derivative Estimation

$$Y_i = g(X_i) + e_i$$
 $\theta_{1x} = g(x), \ \theta_{2x} = \dot{g}(x)$
 $\ell(g, x) = \sum K_h(X_i - x) \{ Y_i - g(X_i) \}^2$

$$\ell(\theta_x) = \sum K_h(X_i - x) \{ Y_i - \theta_{1x} - \theta_{2x}(X_i - x) \}^2$$
$$Y_{i} = g(X_{i}) + e_{i} \qquad \theta_{1x} = g(x), \ \theta_{2x} = \dot{g}(x)$$
$$\ell(g, x) = \sum K_{h}(X_{i} - x) \{ Y_{i} - g(X_{i}) \}^{2}$$
$$\ell(\theta_{x}) = \sum K_{h}(X_{i} - x) \{ Y_{i} - \theta_{1x} - \theta_{2x}(X_{i} - x) \}^{2}$$
$$U(\theta_{2x}) = -2 \sum K_{h}(X_{i} - x)(X_{i} - x) \{ Y_{i} - \theta_{1x} - \theta_{2x}(X_{i} - x) \}$$

$$Y_{i} = g(X_{i}) + e_{i} \qquad \theta_{1x} = g(x), \ \theta_{2x} = \dot{g}(x)$$
$$\ell(g, x) = \sum K_{h}(X_{i} - x) \{ Y_{i} - g(X_{i}) \}^{2}$$
$$\ell(\theta_{x}) = \sum K_{h}(X_{i} - x) \{ Y_{i} - \theta_{1x} - \theta_{2x}(X_{i} - x) \}^{2}$$
$$U(\theta_{2x}) = -2 \sum K_{h}(X_{i} - x)(X_{i} - x) \{ Y_{i} - \theta_{1x} - \theta_{2x}(X_{i} - x) \}$$

$$\mathbf{E}\left[U(\theta_{2x})\right] \approx -\frac{nh^4\mu_4^K}{3}\ddot{g}(x)$$

$$U^{\star}(\theta_{2x}) = U(\theta_{2x}) + \frac{nh^4\mu_4^K}{3} \ddot{g}(x)$$

$$U^{\star}(\theta_{2x}) = U(\theta_{2x}) + \frac{nh^{\star}\mu_{4}^{\Lambda}}{3} \ddot{g}(x)$$
$$= -2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i} + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$$

1 K

$$U^{\star}(\theta_{2x}) = U(\theta_{2x}) + \frac{nh^{4}\mu_{4}^{\Lambda}}{3} \ddot{g}(x)$$
$$= -2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i} + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$$
$$= -2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i}$$

1 12

$$U^{\star}(\theta_{2x}) = U(\theta_{2x}) + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$$

= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i} + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$
= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i}$
 $+ \frac{h^{2}\mu_{4}^{K}}{3\sigma_{K}^{2}}\sum K_{h}(X_{i} - x)(X_{i} - x)\ddot{g}(X_{i})$

1 12

$$U^{\star}(\theta_{2x}) = U(\theta_{2x}) + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$$

= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i} + \frac{nh^{4}\mu_{4}^{K}}{3}\ddot{g}(x)$
= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i}$
+ $\frac{h^{2}\mu_{4}^{K}}{3\sigma_{K}^{2}}\sum K_{h}(X_{i} - x)(X_{i} - x)\ddot{g}(X_{i})$
= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)\left\{Y_{i} - \frac{h^{2}\mu_{4}^{K}}{6\sigma_{K}^{2}}\ddot{g}(X_{i})\right\}$

1 12

$$U^{\star}(\theta_{2x}) = U(\theta_{2x}) + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$$

= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i} + \frac{nh^{4}\mu_{4}^{K}}{3} \ddot{g}(x)$
= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i}$
 $+ \frac{h^{2}\mu_{4}^{K}}{3\sigma_{K}^{2}}\sum K_{h}(X_{i} - x)(X_{i} - x)\ddot{g}(X_{i})$
= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)\left\{Y_{i} - \frac{h^{2}\mu_{4}^{K}}{6\sigma_{K}^{2}}\ddot{g}(X_{i})\right\}$
= $-2\sum K_{h}(X_{i} - x)(X_{i} - x)Y_{i}^{\star}$

$$Y_i^{\star} = Y_i - \frac{h^2 \mu_4^K}{6\sigma_K^2} \ddot{g}(X_i)$$

Ideal Data Sharpening

$$Y_i^{\star} = Y_i - \frac{\hbar^2 \mu_4^K}{6\sigma_K^2} \ddot{g}(X_i)$$

Ideal Data Sharpening

$$\widehat{Y}_{i}^{\star} = Y_{i} - rac{\mu_{4}^{K}}{3\sigma_{K}^{4}} [\widehat{g}(X_{i}) - Y_{i}]$$
 Data Sharpening (BBS)

$$Y_i^{\star} = Y_i - \frac{\hbar^2 \mu_4^K}{6\sigma_K^2} \ddot{g}(X_i)$$
 Ideal Data Sharpening
 $\hat{Y}_i^{\star} = Y_i - \frac{\mu_4^K}{3\sigma_K^4} [\hat{g}(X_i) - Y_i]$ Data Sharpening (BBS)

Nadaraya-Watson Estimator

$$Y_i^{\star} = Y_i - \frac{\hbar^2 \mu_4^K}{6\sigma_K^2} \ddot{g}(X_i)$$
 Ideal Data Sharpening
 $\hat{Y}_i^{\star} = Y_i - \frac{\mu_4^K}{3\sigma_K^4} [\hat{g}(X_i) - Y_i]$ Data Sharpening (BBS)

Nadaraya-Watson Estimator

 $Y_i^{\star} = Y_i - \frac{1}{2}h^2 \sigma_K^2 \ddot{g}(X_i)$ Ideal Data Sharpening

$$Y_i^{\star} = Y_i - \frac{\hbar^2 \mu_4^K}{6\sigma_K^2} \ddot{g}(X_i)$$
 Ideal Data Sharpening
 $\hat{Y}_i^{\star} = Y_i - \frac{\mu_4^K}{3\sigma_K^4} [\hat{g}(X_i) - Y_i]$ Data Sharpening (BBS)

Nadaraya-Watson Estimator

- $Y_i^{\star} = Y_i \frac{1}{2}h^2 \sigma_K^2 \ddot{g}(X_i)$ Ideal Data Sharpening
- $\widehat{Y}_i^{\star} = Y_i [\widehat{g}(X_i) Y_i]$ Data Sharpening (Hall)

Gas mileage Y as a function g of cruising speed X

Gas mileage Y as a function g of cruising speed X Where does the first derivative \dot{g} equal zero?

Gas mileage Y as a function g of cruising speed XWhere does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Gas mileage Y as a function g of cruising speed XWhere does the first derivative \dot{g} equal zero? Usual local linear derivative estimate versus Sharpened counterpart Gas mileage Y as a function g of cruising speed XWhere does the first derivative \dot{g} equal zero? Usual local linear derivative estimate versus Sharpened counterpart

Data:

Gas mileage Y as a function g of cruising speed XWhere does the first derivative \dot{g} equal zero? Usual local linear derivative estimate versus Sharpened counterpart Data: 15 observations of gas mileage Gas mileage Y as a function g of cruising speed XWhere does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Sharpened counterpart

Data:

15 observations of gas mileage Equally spaced cruising speeds [5,75]

Fuel Efficiency

Model:

$$g(x) = 25\sin(x/30) + 5 + e$$

Model:

$$g(x) = 25\sin(x/30) + 5 + e$$

Optimal speed is 47.12 & 1000 samples

Model:

$$g(x) = 25\sin(x/30) + 5 + e$$

Optimal speed is 47.12 & 1000 samples Standard: Bias of 9.79 & root MSE of 11.41

Model:

$$g(x) = 25\sin(x/30) + 5 + e$$

Optimal speed is 47.12 & 1000 samples Standard: Bias of 9.79 & root MSE of 11.41 Sharpened: Bias of 6.41 & root MSE of 7.92

Derivative estimation

Firth's adjusted score function ideal vehicle

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

\mathbf{GLM}

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

\mathbf{GLM}

Clear how to "ideally" sharpen the data

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

\mathbf{GLM}

Clear how to "ideally" sharpen the data Actual DS unclear - residuals over correct for bias

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial) A single adjustment may/will not bias correct in all directions

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

A single adjustment may/will not bias correct in all directions Consider a very regular grid
Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients & residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

A single adjustment may/will not bias correct in all directions Consider a very regular grid Consider a single direction