On the relationship between data sharpening and Firth's adjusted score function

John Braun \& Patrick Brown

Data sharpening

Data sharpening
Two recipes - each data point is adjusted differently

Data sharpening
Two recipes - each data point is adjusted differently
Framework lacking

Data sharpening
Two recipes - each data point is adjusted differently
Framework lacking
Firth's adjusted score function

Data sharpening
Two recipes - each data point is adjusted differently
Framework lacking
Firth's adjusted score function
Derivative estimation - new recipes

Data sharpening
Two recipes - each data point is adjusted differently
Framework lacking
Firth's adjusted score function

Derivative estimation - new recipes
Unresolved extensions

Data sharpening
Two recipes - each data point is adjusted differently
Framework lacking
Firth's adjusted score function

Derivative estimation - new recipes
Unresolved extensions

Standard asymptotics - Wand \& Jones (1995)

Data Sharpening

Data sharpening - Peter Hall

Data Sharpening

Data sharpening - Peter Hall
Preprocessing \Longrightarrow standard software (KDE, N-W)

Data Sharpening

Data sharpening - Peter Hall
Preprocessing \Longrightarrow standard software (KDE, N-W)
Reducing bias \& enforcing constraints

Data Sharpening

Data sharpening - Peter Hall
Preprocessing \Longrightarrow standard software (KDE, N-W)
Reducing bias \& enforcing constraints
Density estimation \& nonparametric regression

Data Sharpening

Data sharpening - Peter Hall
Preprocessing \Longrightarrow standard software (KDE, N-W)
Reducing bias \& enforcing constraints
Density estimation \& nonparametric regression
Reduce bias without inflating variance

Data Sharpening

Data sharpening - Peter Hall
Preprocessing \Longrightarrow standard software (KDE, N-W)
Reducing bias \& enforcing constraints
Density estimation \& nonparametric regression
Reduce bias without inflating variance
No reliance on data greedy alternatives

Data Sharpening

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad X_{i} \sim f
$$

Data Sharpening

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad X_{i} \sim f
$$

KDE: $\hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right) \quad \mathbf{E}[\hat{f}(x)]=f(x)+O\left(h^{2}\right)$

Data Sharpening

$$
\begin{array}{ll}
Y_{i}=g\left(X_{i}\right)+e_{i} & X_{i} \sim f \\
\text { KDE: } \hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right) & \mathbf{E}[\hat{f}(x)]=f(x)+O\left(h^{2}\right) \\
\text { N-W: } \hat{g}(x)=\frac{\sum_{i} K_{h}\left(X_{i}-x\right) Y_{i}}{\sum K_{h}\left(X_{i}-x\right)} & \mathbf{E}[\hat{g}(x)]=g(x)+O\left(h^{2}\right)
\end{array}
$$

Data Sharpening

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad X_{i} \sim f
$$

KDE: $\hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right) \quad \mathbf{E}[\hat{f}(x)]=f(x)+O\left(h^{2}\right)$
$\mathbf{N}-\mathbf{W}: \hat{g}(x)=\frac{\sum_{i} K_{h}\left(X_{i}-x\right) Y_{i}}{\sum K_{h}\left(X_{i}-x\right)} \quad \mathbf{E}[\hat{g}(x)]=g(x)+O\left(h^{2}\right)$
DS for $\mathbf{N}-\mathbf{W}: Y_{i} \longrightarrow Y_{i}^{\star}=Y_{i}+\left[Y_{i}-\hat{g}\left(X_{i}\right)\right]$

Data Sharpening

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad X_{i} \sim f
$$

KDE: $\hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right) \quad \mathbf{E}[\hat{f}(x)]=f(x)+O\left(h^{2}\right)$
$\mathbf{N}-\mathbf{W}: \hat{g}(x)=\frac{\sum_{i} K_{h}\left(X_{i}-x\right) Y_{i}}{\sum K_{h}\left(X_{i}-x\right)} \quad \mathbf{E}[\hat{g}(x)]=g(x)+O\left(h^{2}\right)$
DS for $\mathbf{N}-\mathbf{W}: Y_{i} \longrightarrow Y_{i}^{\star}=Y_{i}+\left[Y_{i}-\hat{g}\left(X_{i}\right)\right]$
DS for KDE: $X_{i} \longrightarrow X_{i}^{\star}=\frac{\sum_{j} K_{h}\left(X_{j}-X_{i}\right) X_{j}}{\sum_{j} K_{h}\left(X_{j}-X_{i}\right)}$

Data Sharpening

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad X_{i} \sim f
$$

KDE: $\hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right) \quad \mathbf{E}[\hat{f}(x)]=f(x)+O\left(h^{2}\right)$
$\mathbf{N}-\mathbf{W}: \hat{g}(x)=\frac{\sum_{i} K_{h}\left(X_{i}-x\right) Y_{i}}{\sum K_{h}\left(X_{i}-x\right)} \quad \mathbf{E}[\hat{g}(x)]=g(x)+O\left(h^{2}\right)$
DS for $\mathbf{N}-\mathbf{W}: Y_{i} \longrightarrow Y_{i}^{\star}=Y_{i}+\left[Y_{i}-\hat{g}\left(X_{i}\right)\right]$
DS for KDE: $X_{i} \longrightarrow X_{i}^{\star}=\frac{\sum_{j} K_{h}\left(X_{j}-X_{i}\right) X_{j}}{\sum_{j} K_{h}\left(X_{j}-X_{i}\right)}$
DS for derivative estimation?

Data Sharpening

Density Estimation:

Data Sharpening

Density Estimation:
 "Cluster design points near peaks"

Data Sharpening

Density Estimation:

"Cluster design points near peaks" "Spread them further apart near troughs"

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs" Some appeal to an asymptotic expression

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator"

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs" Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Origins unclear

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs"
Some appeal to an asymptotic expression

Nonparametric regression

"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Origins unclear
Framework lacking

Data Sharpening

Density Estimation:

"Cluster design points near peaks"
"Spread them further apart near troughs"
Some appeal to an asymptotic expression

Nonparametric regression
"...counteract bias from numerator and denominator" Intuition: Residuals capture bias

Origins unclear
Framework lacking
Note: $\hat{f}(x), \quad \hat{g}(x)$ solve score equations

Firth's Adjusted Score Function

Parametric setting: $U(\theta)=\nabla \ell(\theta) \quad \ell(\theta)=\log \mathcal{L}(\theta)$

Parametric setting: $U(\theta)=\nabla \ell(\theta) \quad \ell(\theta)=\log \mathcal{L}(\theta)$
MLE: $\hat{\theta}$ with bias $b(\theta)$

Parametric setting: $U(\theta)=\nabla \ell(\theta) \quad \ell(\theta)=\log \mathcal{L}(\theta)$
MLE: $\hat{\theta}$ with bias $b(\theta)$
Firth's idea: reduce bias of $\hat{\theta}$ by adjusting $U(\theta)$

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Parametric setting: $U(\theta)=\nabla \ell(\theta) \quad \ell(\theta)=\log \mathcal{L}(\theta)$
MLE: $\hat{\theta}$ with bias $b(\theta)$
Firth's idea: reduce bias of $\hat{\theta}$ by adjusting $U(\theta)$

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Binomial logistic regression - adjust the data

Parametric setting: $U(\theta)=\nabla \ell(\theta) \quad \ell(\theta)=\log \mathcal{L}(\theta)$
MLE: $\hat{\theta}$ with bias $b(\theta)$
Firth's idea: reduce bias of $\hat{\theta}$ by adjusting $U(\theta)$

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Binomial logistic regression - adjust the data

Cox \& Reid (1372), Barndorff-Nielsen. (561), McCullagh and Tibshirani (261), Firth (2337)

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Bias: $b(\theta)=\mathbf{E}[\hat{\theta}-\theta]$

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Bias: $b(\theta)=\mathbf{E}[\hat{\theta}-\theta]$

$$
\hat{\theta}-\theta=\frac{U(\theta)}{i(\theta)}+\frac{1}{2}\left[\frac{U(\theta)}{i(\theta)}\right]^{2} \frac{\ddot{U}(\theta)}{i(\theta)}
$$

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Bias: $b(\theta)=\mathbf{E}[\hat{\theta}-\theta]$

$$
\hat{\theta}-\theta=\frac{U(\theta)}{i(\theta)}+\frac{1}{2}\left[\frac{U(\theta)}{i(\theta)}\right]^{2} \frac{\ddot{U}(\theta)}{i(\theta)}
$$

Standard: both terms contribute to bias

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) b(\theta)
$$

Bias: $b(\theta)=\mathbf{E}[\hat{\theta}-\theta]$

$$
\hat{\theta}-\theta=\frac{U(\theta)}{i(\theta)}+\frac{1}{2}\left[\frac{U(\theta)}{i(\theta)}\right]^{2} \frac{\ddot{U}(\theta)}{i(\theta)}
$$

Standard: both terms contribute to bias

Nonparametrics: second term is of lower order

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right]
$$

Adjusting the Score Function

$$
U^{\star}(\theta)=U(\theta)-i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right]
$$

$$
\approx U(\theta)-\mathbf{E}[U(\theta)]
$$

Adjusting the Score Function

$$
\begin{aligned}
U^{\star}(\theta) & =U(\theta)-i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right] \\
& \approx U(\theta)-\mathbf{E}[U(\theta)]
\end{aligned}
$$

U will be a local likelihood score function

Adjusting the Score Function

$$
\begin{aligned}
U^{\star}(\theta) & =U(\theta)-i(\theta) \cdot \mathbf{E}\left[\frac{U(\theta)}{i(\theta)}\right] \\
& \approx U(\theta)-\mathbf{E}[U(\theta)]
\end{aligned}
$$

U will be a local likelihood score function

Does this lead to an adjustment of the data?

Nadaraya-Watson Estimator

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{x}=g(x)
$$

Nadaraya-Watson Estimator

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{x}=g(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{x}=g(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}^{2} \\
& U\left(\theta_{x}\right)=-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{x}=g(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}^{2} \\
& U\left(\theta_{x}\right)=-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\} \\
& \hat{\theta}_{x}=\hat{g}(x)=\frac{\sum_{i} K_{h}\left(X_{i}-x\right) Y_{i}}{\sum K_{h}\left(X_{i}-x\right)}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{x}=g(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}^{2} \\
& U\left(\theta_{x}\right)=-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\} \\
& \hat{\theta}_{x}=\hat{g}(x)=\frac{\sum_{i} K_{h}\left(X_{i}-x\right) Y_{i}}{\sum K_{h}\left(X_{i}-x\right)}
\end{aligned}
$$

$$
\mathbf{E}\left[U\left(\theta_{x}\right)\right] \approx-n h^{2} \sigma_{K}^{2} \ddot{g}(x)
$$

Nadaraya-Watson Estimator

$$
U^{\star}\left(\theta_{x}\right)=U\left(\theta_{x}\right)+n h^{2} \sigma_{K}^{2} \ddot{g}(x)
$$

Nadaraya-Watson Estimator

$$
\begin{aligned}
U^{\star}\left(\theta_{x}\right) & =U\left(\theta_{x}\right)+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
& =-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}+n h^{2} \sigma_{K}^{2} \ddot{g}(x)
\end{aligned}
$$

Nadaraya-Watson Estimator

$$
\begin{aligned}
& U^{\star}\left(\theta_{x}\right)= U\left(\theta_{x}\right)+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
&=-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
&=-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\} \\
& \quad \quad \quad+h^{2} \sigma_{K}^{2} \sum K_{h}\left(X_{i}-x\right) \ddot{g}\left(X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
U^{\star}\left(\theta_{x}\right)= & U\left(\theta_{x}\right)+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\} \\
& \quad+h^{2} \sigma_{K}^{2} \sum K_{h}\left(X_{i}-x\right) \ddot{g}\left(X_{i}\right) \\
& =-2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\frac{1}{2} h^{2} \sigma_{K}^{2} \ddot{g}\left(X_{i}\right)-\theta_{x}\right\}
\end{aligned}
$$

$$
\begin{aligned}
U^{\star}\left(\theta_{x}\right)= & U\left(\theta_{x}\right)+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\}+n h^{2} \sigma_{K}^{2} \ddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{x}\right\} \\
& \quad+h^{2} \sigma_{K}^{2} \sum K_{h}\left(X_{i}-x\right) \ddot{g}\left(X_{i}\right) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\frac{1}{2} h^{2} \sigma_{K}^{2} \ddot{g}\left(X_{i}\right)-\theta_{x}\right\} \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}^{\star}-\theta_{x}\right\}
\end{aligned}
$$

Ideal Data Sharpening

$$
Y_{i}^{\star}=Y_{i}-\frac{1}{2} h^{2} \sigma_{K}^{2} \ddot{g}\left(X_{i}\right) \quad \text { Ideal Data Sharpening }
$$

Ideal Data Sharpening

$$
\begin{array}{ll}
Y_{i}^{\star}=Y_{i}-\frac{1}{2} h^{2} \sigma_{K}^{2} \ddot{g}\left(X_{i}\right) & \text { Ideal Data Sharpening } \\
\widehat{Y}_{i}^{\star}=Y_{i}-\left[\hat{g}\left(X_{i}\right)-Y_{i}\right] & \text { Data Sharpening (Hall) }
\end{array}
$$

Kernel Density Estimation

$$
X_{i} \sim f \quad \theta_{x}=f(x)
$$

Kernel Density Estimation

$$
\begin{aligned}
& X_{i} \sim f \quad \theta_{x}=f(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right) \theta_{x}-n \int K(u-x) e^{\theta_{x}} d u
\end{aligned}
$$

Kernel Density Estimation

$$
\begin{aligned}
& X_{i} \sim f \quad \theta_{x}=f(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right) \theta_{x}-n \int K(u-x) e^{\theta_{x}} d u \\
& U\left(\theta_{x}\right)=\sum\left\{K_{h}\left(X_{i}-x\right)-e^{\theta_{x}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& X_{i} \sim f \quad \theta_{x}=f(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right) \theta_{x}-n \int K(u-x) e^{\theta_{x}} d u \\
& U\left(\theta_{x}\right)=\sum\left\{K_{h}\left(X_{i}-x\right)-e^{\theta_{x}}\right\} \\
& \hat{\theta}_{x}=\log [\hat{f}(x)] \quad \hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right)
\end{aligned}
$$

$$
\begin{aligned}
& X_{i} \sim f \quad \theta_{x}=f(x) \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right) \theta_{x}-n \int K(u-x) e^{\theta_{x}} d u \\
& U\left(\theta_{x}\right)=\sum\left\{K_{h}\left(X_{i}-x\right)-e^{\theta_{x}}\right\} \\
& \hat{\theta}_{x}=\log [\hat{f}(x)] \quad \hat{f}(x)=\frac{1}{n} \sum K_{h}\left(X_{i}-x\right)
\end{aligned}
$$

$$
\mathbf{E}\left[U\left(\theta_{x}\right)\right] \approx \frac{1}{2} n h^{2} \sigma_{K}^{2} \ddot{f}(x)
$$

$$
U^{\star}\left(\theta_{x}\right)=U\left(\theta_{x}\right)-\frac{1}{2} n h^{2} \sigma_{K}^{2} \ddot{f}(x)
$$

$$
\begin{aligned}
U^{\star}\left(\theta_{x}\right) & =U\left(\theta_{x}\right)-\frac{1}{2} n h^{2} \sigma_{K}^{2} \ddot{f}(x) \\
& =\sum\left\{\left[K_{h}\left(X_{i}-x\right)-h_{s}^{2} \sigma_{K}^{2} \ddot{f}(x)\right]-e^{\theta_{x}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
U^{\star}\left(\theta_{x}\right) & =U\left(\theta_{x}\right)-\frac{1}{2} n h^{2} \sigma_{K}^{2} \ddot{f}(x) \\
& =\sum\left\{\left[K_{h}\left(X_{i}-x\right)-h_{s}^{2} \sigma_{K}^{2} \ddot{f}(x)\right]-e^{\theta_{x}}\right\} \\
& \approx \sum\left\{K_{h}\left(\left[X_{i}+h_{s}^{2} \sigma_{K}^{2} \frac{\dot{f}\left(X_{i}\right)}{f\left(X_{i}\right)}\right]-x\right)-e^{\theta_{x}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& U^{\star}\left(\theta_{x}\right)=U\left(\theta_{x}\right)-\frac{1}{2} n h^{2} \sigma_{K}^{2} \ddot{f}(x) \\
& =\sum\left\{\left[K_{h}\left(X_{i}-x\right)-h_{s}^{2} \sigma_{K}^{2} \ddot{f}(x)\right]-e^{\theta_{x}}\right\} \\
& \approx \sum\left\{K_{h}\left(\left[X_{i}+h_{s}^{2} \sigma_{K}^{2} \frac{\dot{f}\left(X_{i}\right)}{f\left(X_{i}\right)}\right]-x\right)-e^{\theta_{x}}\right\} \\
& \quad=\sum\left\{K_{h}\left(X_{i}^{\star}-x\right)-e^{\theta_{x}}\right\}
\end{aligned}
$$

Kernel Density Estimation

$$
X_{i}^{\star}=X_{i}+h_{s}^{2} \sigma_{K}^{2} \frac{\dot{f}\left(X_{i}\right)}{f\left(X_{i}\right)}
$$

Ideal Data Sharpening

$$
\hat{X}_{i}^{\star}=X_{i}+\frac{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)\left(X_{j}-X_{i}\right)}{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)}
$$

Kernel Density Estimation

$$
X_{i}^{\star}=X_{i}+h_{s}^{2} \sigma_{K}^{2} \frac{f\left(X_{i}\right)}{f\left(X_{i}\right)}
$$

Ideal Data Sharpening

$$
\begin{aligned}
\hat{X}_{i}^{\star} & =X_{i}+\frac{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)\left(X_{j}-X_{i}\right)}{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)} \\
& =\frac{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right) X_{j}}{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)} \quad \text { Data Sharpening (Hall) }
\end{aligned}
$$

Kernel Density Estimation

$$
\begin{aligned}
X_{i}^{\star} & =X_{i}+h_{s}^{2} \sigma_{K}^{2} \frac{\dot{f}\left(X_{i}\right)}{f\left(X_{i}\right)} \quad \text { Ideal Data Sharpening } \\
\hat{X}_{i}^{\star} & =X_{i}+\frac{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)\left(X_{j}-X_{i}\right)}{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)} \\
& =\frac{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right) X_{j}}{\sum_{j} K_{h_{s}}\left(X_{j}-X_{i}\right)} \quad \text { Data Sharpening (Hall) }
\end{aligned}
$$

Proof of concept

Derivative Estimation

$$
Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{1 x}=g(x), \theta_{2 x}=\dot{g}(x)
$$

Derivative Estimation

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{1 x}=g(x), \theta_{2 x}=\dot{g}(x) \\
& \ell(g, x)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-g\left(X_{i}\right)\right\}^{2}
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{1 x}=g(x), \theta_{2 x}=\dot{g}(x) \\
& \ell(g, x)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-g\left(X_{i}\right)\right\}^{2} \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{1 x}-\theta_{2 x}\left(X_{i}-x\right)\right\}^{2}
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{1 x}=g(x), \theta_{2 x}=\dot{g}(x) \\
& \ell(g, x)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-g\left(X_{i}\right)\right\}^{2} \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{1 x}-\theta_{2 x}\left(X_{i}-x\right)\right\}^{2} \\
& U\left(\theta_{2 x}\right)=-2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right)\left\{Y_{i}-\theta_{1 x}-\theta_{2 x}\left(X_{i}-x\right)\right\}
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
& Y_{i}=g\left(X_{i}\right)+e_{i} \quad \theta_{1 x}=g(x), \theta_{2 x}=\dot{g}(x) \\
& \ell(g, x)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-g\left(X_{i}\right)\right\}^{2} \\
& \ell\left(\theta_{x}\right)=\sum K_{h}\left(X_{i}-x\right)\left\{Y_{i}-\theta_{1 x}-\theta_{2 x}\left(X_{i}-x\right)\right\}^{2} \\
& U\left(\theta_{2 x}\right)=-2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right)\left\{Y_{i}-\theta_{1 x}-\theta_{2 x}\left(X_{i}-x\right)\right\}
\end{aligned}
$$

$\mathbf{E}\left[U\left(\theta_{2 x}\right)\right] \approx-\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x)$

Derivative Estimation

$$
U^{\star}\left(\theta_{2 x}\right)=U\left(\theta_{2 x}\right)+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x)
$$

Derivative Estimation

$$
\begin{aligned}
U^{\star}\left(\theta_{2 x}\right) & =U\left(\theta_{2 x}\right)+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
& =-2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x)
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
U^{\star}\left(\theta_{2 x}\right) & =U\left(\theta_{2 x}\right)+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
& =-2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
& =-2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
U^{\star}\left(\theta_{2 x}\right)= & U\left(\theta_{2 x}\right)+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i} \\
& \quad+\frac{h^{2} \mu_{4}^{K}}{3 \sigma_{K}^{2}} \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) \ddot{g}\left(X_{i}\right)
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
U^{\star}\left(\theta_{2 x}\right)= & U\left(\theta_{2 x}\right)+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i} \\
& \quad+\frac{h^{2} \mu_{4}^{K}}{3 \sigma_{K}^{2}} \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) \ddot{g}\left(X_{i}\right) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right)\left\{Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right)\right\}
\end{aligned}
$$

Derivative Estimation

$$
\begin{aligned}
U^{\star}\left(\theta_{2 x}\right)= & U\left(\theta_{2 x}\right)+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}+\frac{n h^{4} \mu_{4}^{K}}{3} \dddot{g}(x) \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i} \\
& \quad+\frac{h^{2} \mu_{4}^{K}}{3 \sigma_{K}^{2}} \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) \ddot{g}\left(X_{i}\right) \\
& =-2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right)\left\{Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right)\right\} \\
= & -2 \sum K_{h}\left(X_{i}-x\right)\left(X_{i}-x\right) Y_{i}^{\star}
\end{aligned}
$$

Derivative Estimation

$$
Y_{i}^{\star}=Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right)
$$

Ideal Data Sharpening

Derivative Estimation

$$
\begin{array}{ll}
Y_{i}^{\star}=Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right) & \text { Ideal Data Sharpening } \\
\widehat{Y}_{i}^{\star}=Y_{i}-\frac{\mu_{4}^{K}}{3 \sigma_{K}^{4}}\left[\hat{g}\left(X_{i}\right)-Y_{i}\right] & \text { Data Sharpening (BBS) }
\end{array}
$$

Derivative Estimation

$$
\begin{array}{ll}
Y_{i}^{\star}=Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right) & \text { Ideal Data Sharpening } \\
\widehat{Y}_{i}^{\star}=Y_{i}-\frac{\mu_{4}^{K}}{3 \sigma_{K}^{4}}\left[\hat{g}\left(X_{i}\right)-Y_{i}\right] & \text { Data Sharpening (BBS) }
\end{array}
$$

Nadaraya-Watson Estimator

Derivative Estimation

$$
\begin{array}{ll}
Y_{i}^{\star}=Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right) & \text { Ideal Data Sharpening } \\
\widehat{Y}_{i}^{\star}=Y_{i}-\frac{\mu_{4}^{K}}{3 \sigma_{K}^{4}}\left[\hat{g}\left(X_{i}\right)-Y_{i}\right] & \text { Data Sharpening (BBS) }
\end{array}
$$

Nadaraya-Watson Estimator

$$
Y_{i}^{\star}=Y_{i}-\frac{1}{2} h^{2} \sigma_{K}^{2} \ddot{g}\left(X_{i}\right) \quad \text { Ideal Data Sharpening }
$$

Derivative Estimation

$$
\begin{array}{ll}
Y_{i}^{\star}=Y_{i}-\frac{h^{2} \mu_{4}^{K}}{6 \sigma_{K}^{2}} \ddot{g}\left(X_{i}\right) & \text { Ideal Data Sharpening } \\
\widehat{Y}_{i}^{\star}=Y_{i}-\frac{\mu_{4}^{K}}{3 \sigma_{K}^{4}}\left[\hat{g}\left(X_{i}\right)-Y_{i}\right] & \text { Data Sharpening (BBS) }
\end{array}
$$

$Y_{i}^{\star}=Y_{i}-\frac{1}{2} h^{2} \sigma_{K}^{2} \ddot{g}\left(X_{i}\right) \quad$ Ideal Data Sharpening

$$
\widehat{Y}_{i}^{\star}=Y_{i}-\left[\hat{g}\left(X_{i}\right)-Y_{i}\right]
$$

$\widehat{Y}_{i}^{\star}=Y_{i}-\left[\hat{g}\left(X_{i}\right)-Y_{i}\right]$
Data Sharpening (Hall)

Fuel Efficiency

Gas mileage Y as a function g of cruising speed X

Fuel Efficiency

Gas mileage Y as a function g of cruising speed X
Where does the first derivative \dot{g} equal zero?

Gas mileage Y as a function g of cruising speed X
Where does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Gas mileage Y as a function g of cruising speed X
Where does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Sharpened counterpart

Gas mileage Y as a function g of cruising speed X
Where does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Sharpened counterpart
Data:

Gas mileage Y as a function g of cruising speed X
Where does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Sharpened counterpart

Data:
15 observations of gas mileage

Gas mileage Y as a function g of cruising speed X

Where does the first derivative \dot{g} equal zero?

Usual local linear derivative estimate versus

Sharpened counterpart

Data:

15 observations of gas mileage
Equally spaced cruising speeds [5,75]

Model:

$$
g(x)=25 \sin (x / 30)+5+e
$$

Small simulation

Model:

$$
g(x)=25 \sin (x / 30)+5+e
$$

Optimal speed is $47.12 \& 1000$ samples

Small simulation

Model:

$$
g(x)=25 \sin (x / 30)+5+e
$$

Optimal speed is $47.12 \& 1000$ samples
Standard: Bias of 9.79 \& root MSE of 11.41

Small simulation

Model:

$$
g(x)=25 \sin (x / 30)+5+e
$$

Optimal speed is $47.12 \& 1000$ samples
Standard: Bias of 9.79 \& root MSE of 11.41
Sharpened: Bias of $\mathbf{6 . 4 1} \&$ root MSE of 7.92

Derivative estimation

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives
Complex coefficients \& residuals from higher order polynomial fits

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data
Actual DS unclear - residuals over correct for bias

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives
Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data
Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data
Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

A single adjustment may/will not bias correct in all directions

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data
Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

A single adjustment may/will not bias correct in all directions Consider a very regular grid

Expanding the boundaries of DS

Derivative estimation

Firth's adjusted score function ideal vehicle

Higher order derivatives

Complex coefficients \& residuals from higher order polynomial fits "Simple" structure but laborious calculations - computer algebra

GLM

Clear how to "ideally" sharpen the data
Actual DS unclear - residuals over correct for bias

Derivatives in a multivariate setting (spatial)

A single adjustment may/will not bias correct in all directions Consider a very regular grid
Consider a single direction

