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Data Sharpening

Yi = g(Xi) + ei Xi ∼ f

KDE: f̂ (x ) = 1
n

∑
Kh(Xi − x ) E[f̂ (x )] = f (x ) +O(h2)

N-W: ĝ(x ) =
∑

i Kh (Xi−x)Yi∑
Kh (Xi−x) E[ĝ(x )] = g(x ) +O(h2)

DS for N-W: Yi −→ Y ?
i = Yi + [Yi − ĝ(Xi)]

DS for KDE: Xi −→ X ?
i =

∑
j Kh (Xj−Xi )Xj∑
j Kh (Xj−Xi )

DS for derivative estimation?
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DS for KDE: Xi −→ X ?
i =

∑
j Kh (Xj−Xi )Xj∑
j Kh (Xj−Xi )

DS for derivative estimation?



Data Sharpening

Yi = g(Xi) + ei Xi ∼ f

KDE: f̂ (x ) = 1
n

∑
Kh(Xi − x ) E[f̂ (x )] = f (x ) +O(h2)

N-W: ĝ(x ) =
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Density Estimation:

“Cluster design points near peaks”
“Spread them further apart near troughs”
Some appeal to an asymptotic expression

Nonparametric regression

“...counteract bias from numerator and denominator”
Intuition: Residuals capture bias

Origins unclear

Framework lacking

Note: f̂ (x ), ĝ(x ) solve score equations
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Firth’s Adjusted Score Function

Parametric setting: U (θ) = ∇`(θ) `(θ) = logL(θ)

MLE: θ̂ with bias b(θ)

Firth’s idea: reduce bias of θ̂ by adjusting U (θ)

U ?(θ) = U (θ)− i(θ)b(θ)

Binomial logistic regression - adjust the data

Cox & Reid (1372), Barndorff-Nielsen. (561),
McCullagh and Tibshirani (261), Firth (2337)
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Bias: b(θ) = E[θ̂ − θ]

θ̂ − θ = U (θ)
i(θ) + 1
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[
U (θ)
i(θ)

]2
Ü (θ)
i(θ)

Standard: both terms contribute to bias

Nonparametrics: second term is of lower order
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Ü (θ)
i(θ)

Standard: both terms contribute to bias

Nonparametrics: second term is of lower order



Adjusting the Score Function

U ?(θ) = U (θ)− i(θ)b(θ)

Bias: b(θ) = E[θ̂ − θ]

θ̂ − θ = U (θ)
i(θ) + 1

2

[
U (θ)
i(θ)

]2
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θ̂x = ĝ(x ) =
∑

i Kh (Xi−x)Yi∑
Kh (Xi−x)

E [U (θx )] ≈ −nh2σ2K g̈(x )



Nadaraya-Watson Estimator

Yi = g(Xi) + ei θx = g(x )

`(θx ) =
∑

Kh(Xi − x ){Yi − θx}2

U (θx ) = −2
∑

Kh(Xi − x ){Yi − θx}

θ̂x = ĝ(x ) =
∑

i Kh (Xi−x)Yi∑
Kh (Xi−x)

E [U (θx )] ≈ −nh2σ2K g̈(x )



Nadaraya-Watson Estimator

U ?(θx ) = U (θx ) + nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}+ nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}

+ h2σ2K
∑

Kh(Xi − x )g̈(Xi)

= −2
∑

Kh(Xi − x ){Yi − 1
2h

2σ2K g̈(Xi)− θx}

= −2
∑

Kh(Xi − x ){Y ?
i − θx}



Nadaraya-Watson Estimator

U ?(θx ) = U (θx ) + nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}+ nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}

+ h2σ2K
∑

Kh(Xi − x )g̈(Xi)

= −2
∑

Kh(Xi − x ){Yi − 1
2h

2σ2K g̈(Xi)− θx}

= −2
∑

Kh(Xi − x ){Y ?
i − θx}



Nadaraya-Watson Estimator

U ?(θx ) = U (θx ) + nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}+ nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}

+ h2σ2K
∑

Kh(Xi − x )g̈(Xi)

= −2
∑

Kh(Xi − x ){Yi − 1
2h

2σ2K g̈(Xi)− θx}

= −2
∑

Kh(Xi − x ){Y ?
i − θx}



Nadaraya-Watson Estimator

U ?(θx ) = U (θx ) + nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}+ nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}

+ h2σ2K
∑

Kh(Xi − x )g̈(Xi)

= −2
∑

Kh(Xi − x ){Yi − 1
2h

2σ2K g̈(Xi)− θx}

= −2
∑

Kh(Xi − x ){Y ?
i − θx}



Nadaraya-Watson Estimator

U ?(θx ) = U (θx ) + nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}+ nh2σ2K g̈(x )

= −2
∑

Kh(Xi − x ){Yi − θx}

+ h2σ2K
∑

Kh(Xi − x )g̈(Xi)

= −2
∑

Kh(Xi − x ){Yi − 1
2h

2σ2K g̈(Xi)− θx}

= −2
∑

Kh(Xi − x ){Y ?
i − θx}



Ideal Data Sharpening

Y ?
i = Yi − 1

2h
2σ2K g̈(Xi) Ideal Data Sharpening
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ḟ (Xi )
f (Xi )

Ideal Data Sharpening

X̂ ?
i = Xi +

∑
j Khs (Xj−Xi )(Xj−Xi )∑

j Khs (Xj−Xi )

=
∑

j Khs (Xj−Xi )Xj∑
j Khs (Xj−Xi )

Data Sharpening (Hall)

Proof of concept



Kernel Density Estimation

X ?
i = Xi + h2

s σ
2
K
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