Application of advanced patientspecific Monte Carlo dose calculations for brachytherapy

Rowan M. Thomson

Carleton Laboratory for Radiotherapy Physics Carleton University

Ottawa, Canada

CANSSI/COMP workshop, 4-5 April 2017

Radiotherapy

Radiotherapy used for > 50% of cancer treatments

• "the majority of our radiotherapy strategies were derived by empirical optimization of clinical experience performed with inferior technologies." Chapman & Nahum, 2015

Radiotherapy

Radiotherapy used for > 50% of cancer treatments

- "the majority of our radiotherapy strategies were derived by empirical optimization of clinical experience performed with inferior technologies." Chapman & Nahum, 2015
- Development of new technologies; quantitative assessment of treatments → Collaborations
- Innovate...
 - Equally good or better treatment outcomes with less normal tissue trauma
 - Improve "Therapeutic Ratio" = efficiency of tumour cell kill relative to normal tissue complications

Today

- Brachytherapy & dose calculations approaches
- Advanced model-based dose calculations: patient/treatment model \rightarrow calculation
- Applications of advanced dose calculations for brachytherapy: breast, eye, prostate
 - Dose differences
 - Clinical implications, outcomes modelling
- Ongoing and future research

Brachytherapy: 'up close' radiotherapy

www.brachytherapy.com

- Goal: deliver high doses to target; minimizing dose to normal tissues
- Evaluation of radiation doses is critical

Current clinical approach: TG-43

Sum over all seeds

Dose for 1 seed in water

Patient and sources

TG-43 formalism

Formalism developed by Task Group 43 (TG-43) of the American Associate of Physicists in Medicine (AAPM)

TG-43 is inaccurate

Sum over all seeds

Dose for 1 seed in water

Patient and sources

TG-43 formalism

- Effects of non-water tissues, sources, shielding neglected
- Calculated doses inaccurate Beaulieu et al (TG-186), Med Phys **39** (2012)

If not TG-43, then what?

"**TG-186**" Model-based dose calculation: detailed virtual patient model, sources

TG-43 formalism

Model-based dose calculation algorithms (MBDCAs)

- e.g. Monte Carlo (MC) simulations
- Clinical adoption recommended (AAPM/ESTRO/ABG TG-186)

Monte Carlo (MC) dose calculations

- BrachyDose, egs_brachy (Carleton Laboratory for Radiotherapy Physics: CLRP)
- Simulation of transport of radiation quanta through matter (EGSnrc)
- Flexible, accurate, & fast: promising tool wide range of applications

¹⁰³Pd breast implant

 $^{125}\mathrm{I}$ eye plaque

¹²⁵I prostate implant

Electronic brachytherapy

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology

Phys. Med. Biol. 61 (2016) 8214-8231

doi:10.1088/0031-9155/61/23/8214

egs_brachy: a versatile and fast Monte Carlo code for brachytherapy

Marc J P Chamberland, Randle E P Taylor, D W O Rogers and Rowan M Thomson

Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton

- egs_brachy to be released as free, open source software to research community (2017)
- Sub-30 s calculation times on a single CPU for clinical scenarios (even shorter times by running in parallel)

CT artifacts

(b)

Artifacts: bright spots larger than seed dimensions,

streaks.

CT artifacts: mitigate

- Use Metallic Artifact Reduction (MAR) technique*
- Bright spot artifacts are eliminated
- Retain important anatomical features

*Miksys et al. Phys Med Biol 2015;60:6039-6062.

Assign tissues

 Assign mass density to each voxel: CT number → density calibration curve

CT number (HU)	mass density (g/cm^3)
-832	0.217
-522.8	0.508
-74.2	0.967
-34.7	0.99
6.2	1.018
47.8	1.061
56.5	1.071
244.2	1.159
999	1.575

Assign tissues

- Assign mass density to each voxel: CT number → density calibration curve
- Use physician-drawn contours and tissue assignment scheme to assign elemental composition to each voxel

_	CT number (HU)	mass density (g/cm^3)
	-832	0.217
	-522.8	0.508
	-74.2	0.967
	-34.7	0.99
	6.2	1.018
	47.8	1.061
	56.5	1.071
	244.2	1.159
	999	1.575

Reference MC model MCref				
Region	Tissue	Mass density range		
Prostate (18) 50P50C		\leq 1.14 g/cm ³ 1.14-1.27 g/cm ³		
	Calcification(breast)	$>1.27 \text{ g/cm}^3$		
Urethra	Prostate	All		
Rectum	Rectum (19)	All		
Bladder	Urinary bladder(empty) (18)	All		
Remainder	Mean male soft tissue (17)	\leq 1.14 g/cm ³		
	Cortical bone (18)	$>1.14 \text{ g/cm}^3$		

Assign tissues

- Assign mass density to each voxel: C⁻ number → density calibration curve
- Use physician-drawn contours and tissue assignment scheme to assign elemental composition to each voxe

OT	CT number (HU)	mass density (g/cm^3)
CI	-832	0.217
	-522.8	0.508
e	-74.2	0.967
	-34.7	0.99
	6.2	1.018
า	47.8	1.061
1	56.5	1.071
el	244.2	1.159
	999	1.575

	Reference MC model MCref					
Region	Tissue	Mass density range				
Target	Prostate (18)	\leq 1.14 g/cm ³				
	50P50C	$1.14-1.27 \text{ g/cm}^3$				
	Calcification(breast)	$>1.27 \text{ g/cm}^{3}$				
Urethra	Prostate	All				
Rectum	Rectum (19)	All				
Bladder	Urinary bladder(empty) (18)	All				
Remainder	Mean male soft tissue (17)	\leq 1.14 g/cm ³				
	Cortical bone (18)	$>1.14 \text{ g/cm}^3$				

Tissue elemental compositions are quite uncertain!

- One or a few samples, > 30 years ago
- Variations over population

MC dose calculations

- Voxelized patient models with detailed source/applicator models superimposed = Model-based dose calculation (TG-186)
- TG-43 or "TG43sim" calculations carried out (consistency): sources in water, no interseed effects

 $^{125}\mathrm{I}$ prostate implant

Applications

Application of MC dose calculations to breast, eye, prostate brachytherapy treatments

- What are dose differences between MBDCA/MC and TG43?
- Know doses more accurately so what?
 - Clinical implications
 - Biological outcomes modelling
 - Connections with patient outcomes

Breast: ¹⁰³Pd brachytherapy

- Permanent breast seed implant (PBSI) is a form of accelerated partial breast irradation
- Treat common form of breast cancer (Ductal Carcinoma In-Situ), following breast-conserving surgery (lumpectomy)
- Pioneered 10 years ago at Sunnybrook - Pignol et al, IJROBP 64 (2006)

Breast: MC, TG43 comparison

Colour wash gives ratio of doses: detailed tissue MC / TG43

Breast: Clinical implications

- Retrospective study of 140 PBSI patients treated at Sunnybrook – Mashouf et al, IJROBP 94 (2016)
- "Inhomogeneity Correction Factor" (ICF) applied to TG43 (some tissue effects, no interseed attenution)
- Target volume V₁₀₀ is 19% lower with ICF than TG43: possible recurrence risk, underdose (need more data)
- Skin complications (desquamation, erythema, telangiectasia) – better predictions with ICF than TG43

Breast: Clinical implications

- Retrospective study of 140 PBSI patients treated at Sunnybrook – Mashouf et al, IJROBP 94 (2016)
- "Inhomogeneity Correction Factor" (ICF) applied to TG43 (some tissue effects, no interseed attenution)
- Target volume V₁₀₀ is 19% lower with ICF than TG43: possible recurrence risk, underdose (need more data)
- Skin complications (desquamation, erythema, telangiectasia) better predictions with ICF than TG43

→ Promise of MBDCAs: identify/distinguish inadequate dose coverage of target (may be missed with TG43); improve prediction of skin toxicity

 More research: full MBDCA, prescription dose revision, skin toxicity thresholds

Possible confounding factor in analyses uncertainty in tissue compositions

Eye plaque brachytherapy

- Plaque containing radiocative sources (¹⁰³Pd, ¹²⁵I) is temporarily implanted adjacent to tumor; removed 3-7 days later
- Posterior (choroidal melanoma) and anterior (iris melanoma)

www.eyecancer.com

Shields et al, Br J Ophthalmol 79 (1995).

RM Thomson

28

Eye: Plaque in water

Contours give percent difference in dose for plaque in water versus TG43:

- Differences >20% in tumour and normal ocular structures
- 90% differences possible at optic nerve

Rivard et al, Med Phys 38 (2011); Thomson et al Med Phys 35 (2008)

Eye: Plaque and patient models

1.0

0.5

0.0

-0.5

-1.0

-1.5 -1.0 -0.5

x / cm

Colour isodose lines: -Dotted: TG43 -Dashed: plaque in water -Solid: plaque and patient models

Lesperance et al, Med Phys 41 (2014)

0.0

z/cm

25

0

0.5

1.0

Eye: Clinical implications

- Plaque therapy effective local control in 90% of patients
- Radiation-induced injury not uncommon:
 - Necessitated enucleation in 5% of cases
 - 3 years after brachytherapy, 49% of patients had lost 6 or more lines of visual acuity from baseline (radiation toxicity to retina or optic nerve)

Collaborative Ocular Melanoma Study (COMS) Group, Arch Ophthalmol **124** (2006); Melia et al, Ophthalmology **108** (2001).

Eye: Clinical implications

- Plaque therapy effective local control in 90% of patients
- Radiation-induced injury not uncommon:
 - Necessitated enucleation in 5% of cases
 - 3 years after brachytherapy, 49% of patients had lost 6 or more lines of visual acuity from baseline (radiation toxicity to retina or optic nerve)

Collaborative Ocular Melanoma Study (COMS) Group, Arch Ophthalmol **124** (2006); Melia et al, Ophthalmology **108** (2001).

High rate of local control & relatively high rate of toxicity \rightarrow more favourable therapeutic ratio with lower radiation dose? Perez et al, IJROBP **89**, 127–136 (2014).

- All studies to date have employed TG43 (large dose errors; inconsistencies with different plaque models)
- Use MBDCA/MC to help understand treatment outcomes; improve plaque design.

Prostate: ¹²⁵ I brachytherapy

- Permanent implant prostate brachytherapy (¹²⁵I) commonly-used for low and intermediate risk prostate cancer
- Recent dosimetric and radiobiological analyses: Centre Hospitalier et Universitaire (CHU) de Quebec, 613 patients treated (2003 to 2012) Miksys et al, IJROBP 97 (2017); Miksys et al, Med. Phys. (under review).

Prostate: Patient with large calcification

 MC yields relatively greater doses to calcifications and lower doses (possibly > 50%) to regions about calcifications.

Possibility of clinically	underdosed volume		
	RM Thomson		1
		5-6-6-	

Prostate: 'Average' patient

• "Average" patient: D₉₀ is 5.9% lower with MC than TG43

Prostate: cohort doses

Miksys et al.

International Journal of Radiation Oncology • Biology • Physics

Table 2 Dose metrics evaluated with MCref and TG43sim for 613 patients and 3 example cases (Fig. 2)													
	Target			Urethra		Rectum			Bladder				
	D ₉₀ (Gy)	D ₉₉ (Gy)	V ₁₀₀ (%)	V ₂₀₀ (%)	D ₅ (Gy)	D ₃₀ (Gy)	V ₁₀₀ (%)	D _{0.1cm3} (Gy)	$\begin{array}{c} D_{2cm3} \\ (Gy) \end{array}$	D ₃₀ (Gy)	D _{0.1cm3} (Gy)	D ₅ (Gy)	D ₃₀ (Gy)
Overall results fron	613 pat	ents											
MCref	144.1	94.6	88.2	30.0	271.4	222.2	83.4	176.3	97.5	42.8	221.8	120.1	54.9
TG43sim	152.6	101.3	90.4	33.4	283.4	232.8	86.0	185.6	102.8	44.2	219.2	119.7	56.0
$\%\Delta_{ m av}$	-5.9	-7.2	-2.6	-11.5	-4.4	-4.7	-5.7	-5.2	-5.4	-3.2	1.3	0.4	-2.1
$\%\Delta_{ m std}$	1.6	2.5	1.7	3.2	1.8	1.9	6.5	1.8	1.7	5.3	1.8	1.5	2.0
IQR(MCref)	34.9	32.2	9.8	14.7	93.2	56.6	19.8	73.6	34.8	16.7	99.8	38.6	22.0
IQR(TG43sim)	36.6	33.8	9.2	16.9	97.5	58.6	17.7	76.0	36.8	18.4	98.9	38.5	22.1

- D₉₀ is 5.9% lower with **MC** than **TG43**
- Considerable variation in D₉₀ values over patient cohort:
 - 50% of patients have D₉₀ between 127 and 162 Gy;
 - 95% of patients have D_{90} between 85 to 204 Gy.

Prostate: radiobiological models

- Goal of radiobiological modelling: provide insight by accounting for biological response to radiotherapy
- Previous work with TG43
- We investigated coupling of patient-specific MC dose calculations with biological dose and tumour control probability models

https://elcaminogmi.dnadirect.com/img/content/ common/cellsToDNA.gif

N. Miksys, et al, Med Phys (under review)

What is biological dose?

Represents tissue-specific biological response to radiation damage over protracted radiotherapy treatments.

Quantified via "Biologically Effective Dose" (BED)*: BED [Gy] = Dose [Gy] X Relative Effectiveness [dimensionless]

- Related to (the logarithm of the) surviving fraction of cells
- Predict/assess damage of a particular treatment
- Equivalent Uniform BED (EUBED) accounts for spatial dose variations in target

Tumour Control Probability (TCP) describes likelihood of a treatment to be curative

*Fowler, Br J Radiol 62 (1989)

Prostate: Radiobiological model parameters

Parameter	Reference Value
Single-hit radiosensitivity: α	$0.15 { m Gy}^{-1}$
Double-hit radiosensitivity: β	$0.05~\mathrm{Gy}^{-2}$
I-125 half life: $t_{1/2}$	59.4 days
I-125 decay constant: λ	$0.01167 \text{ days}^{-1}$
Tumour potential doubling time: T_{pot}	42 days
Effective tumour repopulation rate: γ	0.0165 days^{-1}
Repair half-life: $T_{R1/2}$	0.01125 days
Sub lethal repair constant: μ	61.61 days^{-1}
Initial number of cancer cells: N_0	10^{6}

- Considerable uncertainty in parameters within population, unknown for particular patient
- Nath et al, AAPM Report TG-137 (2009)

Prostate - radiobiology: What did we do?

- Compare biological doses and TCPs calculated from full MC and TG-43 dose calculations
- Identify limitations and suggest (3) extensions to improve standard radiobiological models based on new considerations related to full tissue MC dose calculations

Prostate: Low doses within target

- Calculations of EUBED are highly sensitive to low doses in treatment volume – can yield TCP near zero (not consistent with clinical outcomes)
- To circumvent this, previous studies using TG-43 doses removed/omitted low doses in target (<D99*; < 110 Gy **)!

*Ling et al, IJROBP 28 (1994); **King et al, IJROBP 46 (2000).

Prostate: Low doses within target

Calculations of EUBED are highly sensitive to low doses in treatm (a) (a) (b) 14 (k) (j) with cl • To circ remov Example 2 Example 1 (m) (1) (c) (d) (c) Doses<110 Gy

Prostate: Low doses within target

Some results

Box and whiskers plots: -box plots represent median and 50th percentile range -whiskers extend to 95th percentile -crosses are outliers -dots are mean

Lower plot gives TCP corresponding to Biological dose in upper plot

Some results

BED_{NR} – Simplest:

- uniform D₉₀ dose, no repopulation
- BED_{NR} estimates for MC and TG43 differ by about the same amount as physical dose (~6%)
- Corresponding TCP population mean/median near 1.

Some results

EUBED_{>0Gy}: <u>non-uniform</u> <u>dose</u> over target, no low dose rejection

 Corresponding TCP estimates are low.

Prostate:

Summary of results

11 biological doses models (varying complexity) and corresponding TCP estimates

Prostate: TCP

- TCPs calculated with either MC or TG43 (ranging from 0 and 100%) do NOT accurately reflect patient outcomes.
- Outcomes:
 - 5 to 10 year biochemical failure free survival rates are 85% to 90% Martin et al, IJROBP 67, 334-341 (2007); Zebentout et al, Cancer radiotherapie 14, 183-188 (2010); Hinnen et al, IJROBP 76 (2010); Merrick et al, IJROBP 65 (2006).
 - Analysis started for this patient cohort.

 \rightarrow Need to re-asses radiobiological model parameter values (e.g. α , β) to obtain results consistent with clinical observation

Prostate: Outcomes analysis

• Treatment failures:

- Insights into treatment failures from more accurate (MC) dose distributions? (cold spots?)
- Biopsy data from different parts of the prostate → spatial tumour cell density in relation to dose distribution
- Can we correlate doses with clinical endpoints? Local control; normal tissue damage
- Limited sample sizes → pool data from multiple institutions? Institutional differences, e.g., mean D₉₀: TOHCC: 138.3 Gy [TG43]; 134.2 Gy [MC] CHUQ: 152.6 Gy [TG43]; 144.1 Gy [MC]

TOHCC = The Ottawa Hospital Cancer Centre - Haidari (CU-MSc), Miksys, Cygler et al, in preparation

Summary

"the majority of our radiotherapy strategies were derived by empirical optimization of clinical experience performed with inferior technologies." Chapman & Nahum, 2015

- Today, focused on "new" technology of advanced modelbased (MC) dose calculations for brachytherapy
- Applications in breast, ocular, prostate cancers

Summary

"the majority of our radiotherapy strategies were derived by empirical optimization of clinical experience performed with inferior technologies." Chapman & Nahum, 2015

- Today, focused on "new" technology of advanced modelbased (MC) dose calculations for brachytherapy
- Applications in breast, ocular, prostate cancers
- Demonstrated differences between traditional, TG-43 approach and full-tissue MC of a few percent to 90%
- Possibility of clinically-underdosed volumes within target that would be missed with TG-43
- Opportunities for collaboration in many areas: from implementation of MBDC to outcomes modelling/analyses

Challenges, ongoing/future research

- Implementation of MBDCA/MC: accuracy of patient model, tissue elemental compositions
- Outcomes modelling:
 - Shortcomings in (analytic) radiobiological models, uncertainty in parameters (ex: prostate)
 - Other approaches data-driven (phenomenological, statistical)
- Treatment evaluation:
 - Patient numbers
 - Institutional differences (ex: eye plaque design, prostate implant technique, patient selection)
- New treatment approaches (ex: nanodevices)

→ Potential for impact on patient well-being, costs

Thanks

Carleton University: Marielle Lesperance, Martin Martinov, Justin Sutherland, Nelson Miksys, Mehan Haidari CHUQ/Laval: Luc Beaulieu, Andre-Guy Martin, Eric Vigneault Ottawa Hosp.: Joanna Cygler, O. Holmes, G. Perry, E. Choan

rthomson@physics.carleton.ca

www.physics.carleton.ca/~rthomson

Canada's Capital University